Determination of the Effects of Mineral on Seed Yield by Different Statistic Methods in Bread Wheat (Triticum aestivum L.) under Drought Conditions

The purpose of this study is to determine the effect of minerals (N, P, K, Ca, Mg, S, Fe, Mn, Zn and Cu) on yield components by different statistical methods and this will help to understand efficiency of them in breeding programs. This study was carried out in the location of Eskişehir Osmangazi University, Faculty of Agriculture, in 2014-15 arid cropping seasons. Success mainly depends on power of effectiveness parameters used and statistical methods could be safely used to reveal effectiveness of parameters in the breeding programs. Results of correlation, cluster, principal component and conditional formatting analyses revealed that with in the efficiency limits (between the lowest dose and toxicity level) integrative effects of minerals were determined. This means that behavior of minerals among genotypes are mainly similar. some minerals called MEPG (N, P, K, Ca, S and Zn) are mostly effective in growth, others called MECA (Mg, Fe, Mn and Cu) are mostly effective in photosynthesis, and 0,767 unit increase MEGA and 0,481 unit in MECA increases result in 1 unit increase in the grain yield. Harmankaya, Sultan, Müfitbey and Tosunbey were found as higher performance and stabile bread wheat genotypes. To determine the changes of the minerals in the genotypes, are important for definig their effect on yield as well as the yield components. Obtained data will make contributions to the success of breeding programs that will be done in the future.

___

E. Acevedo, A. P. Conesa, P. Monneveux and J. P. Srivastava, “Physiology-Breeding of Winter Ceceals for Stressed Mediterranean Environments” , INRA Editions, Versailles Cedex, France, 1989.

W. Anderson, “An Introduction to Multivariate Statistical Analysis” , 2nd edn., Wiley, New York, 1984.

J. l. Andriolo, L. Erpen, F. l. Cardoso, C. Cocco, G. S. Casagrande and D. I. Janısch, “Nitrogen Levels in the Cultivation of Strawberries in Soilless Culture” Horticultura Brasileira, vol. 29, 516–519, 2011.

Anonymous, “https://www.actx.edu/web/ files/filecabinet/folder7/Excel” , 2007.

M Ashraf and P. J. C., “Harris Potential biochemical indicators of salinity tolerance in plants” , Plant Science, vol. 166, 3–16, 2004.

D. F. Austin and M. Lee, “Comparative mapping in F2∶3 and F6∶7 generations of quantitative trait loci for grain yield and yield components in maize” , Theor Appl Genet, vol. 92, no 7, 817–826, 1996.

D. J. Bonfil and U. Kafkafi, “Wild wheat adaptation in different soil ecosystems as expressed in the mineral concentration of the seeds” , Euphytica, vol. 114, 123–134, 2000.

J. H. F. Bothwell and C. K. Y. Ng “The evolution of Ca2+ signalling in photosynthetic eukaryotes” , New Phytol, vol. 166, 21–38, 2005.

F. Branca and M. Ferrari, “Impact of micronutrient deficiencies on growth: The stunting syndrome” , Annals of Nutrition and Metabolism, vol. 46, 8–17, 2002.

I. Çakmak, “Enrichment of cereal grains with zinc: agronomic or genetic biofortification?” , Plant and Soil, vol. 302, 1–17, 2008.

A. Ceylan, “Field Crop Production” , Aegean University Press, İzmir, 1994. [12] W. Dillon and M. Goldstein, “Multivariate Analysis: Methods and Applications” , Wiley, New York, 1984.

R. Doğan, “Determination of Grain Yield and Some Agronomic Characters of Bread Wheat (Triticum aestivum L.) Lines” , Journal of Agricultural Faculty of Uludağ University, vol. 16, no 2, 149–158, 2002.

A. A. El-Ghamery, M. A. El-Kholy and A. ElYousser, “Evaluation of cytological effects of Zn+2 in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L.” , Mutation Research, vol. 537, 29–41, 2003.

S. E. Fienberg, “The Analysis of Cross- Classified Categorical Data” , The MIT Press, 1987.

L. F. Garcia del Moral, Y. Rharrabti, D. Villegas and C. Royo, “Evaluation of grain yield and its components in durum wheat under Mediterranean conditions: An ontogenic approach” , Agron J, vol. 95, no 2, 266–274, 2003.

İ. Genç, “Physiological and Morphological Basis in Cereals” , Çukurova Üniv Agric Fac Press, no 22, Ankara, 1977.

N. Gür, A. Topdemir, Ö. Munzuroğlu and D. Çobanoğlu, “The effect of heavy metal ions (Cu+2, Pb+2, Hg+2, Cd+2) on pollen germination and tube growth in Clivia sp.” , FU Journal of Science and Math, vol. 16, no 2, 177–182, 2004.

J. F. Hadr, R. E. Anderson, R. L. Tatham and W. C. Black, “Multivariate Data Analysis” , Prentice Hall, New Jersey, 1998.

J. Hiltbrunner, B. Streit and M. Liedgens, “Are graining densities an opportunity to increase grain yield of winter wheat in a living mulch of white clover?” , Field Crops Research, vol. 102, 163–171, 2007.

W. Hoyt, S. Leierer and M. Millington, “Analysis and interpretation of findings using multiple regression techniques” , Rehabilitation Counseling Bulletin, vol. 49, no 4, 223–233, 2006.

A. Hussain, H. Larsson, R. Kuktaite and E. Johansson, “Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake” , Int J Environ Res Public Health, vol. 7, no 9, 3442–3456, 2010.

J. Jaccard, V. Guilamo-Ramos, M. Johansson and A. Bouris, “Multiple regression analyses in clinical child and adolescent psychology” , Journal of Clinical Child and Adolescent Psychology, vol. 35, no 3, 456–479, 2006.

B. B. Jackson, “Multivariate Data Analysis An Introduction” , Ilnois, Richard, D. Irwın, Inc., 2004.

M. Jezek, C. M. Geilfus, A. Bayer and K. H. Mühling, “Photosynthetic capacity, nutrient status and growth of maize (Zea mays L.) upon MgSO4 leaf-application” , Front Plant Sci, vol. 5, 781, 2014.

R. A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis” , Prentice Hall, New Jersey, 2002.

K. Joreskog, “Factor Analysis by Least Squares and Maximum Likelihood Methods” , In: K. Enslein, A. Ralston ve H. Wilf, (eds) “Statistical Methods for Digital Computers” , Wiley, New York, 125–153, 1977.

C. Kaya and D. Higgs, “Improvements in the physiological and nutritional developments of tomato cultivars grown at high zinc by foliar application of phosphorus and iron” , Journal of Plant Nutrition, vol. 25, no 9, 1881–1894, 2002.

H. Kirchmann, L. Mattsson and J. Eriksson, “Trace element concentration in wheat grain: Results from the Swedish long-term soil fertility experiments and national monitoring program” , Environ Geochem Health, vol. 31, 561–571, 2009.

B. Kouakou, KS. S. Alexis, D. Adjehi, D. K. Marcelin and G. Dago, “Biochemical changes occurring during germination and fermentation of millet and effect of technological processes on starch hydrolysis by the crude enzymatic extract of millet” , Journal of Applied Science Research, vol. 4, 1502–1510, 2008.

H. Lambers, M D. Cramer, M. W. Shane, M. Wouterlood, P. Poot and E. J. Veneklass, “Structure and Functioning of Cluster Roots and Plant responses to Phosphate Deficiency” , Plant and Soil, vol. 248, 9–19, 2003.

H. W. Lopez, V. Krespine, A. Lemaire, C. Coudray, C. Feillet-Coudray, A. Messager, C. Demigne and C. Remesy, “Wheat variety has a major influence on mineral bioavailability; Studies in rats” , Journal of Cereal Science, vol. 37, 257–266, 2003.

H. Marschner, “Mineral Nutrition of Higher Plants” , 2nd edn., London Academic Press, London, 1995.

M. C. Martinez-Ballesta, R. Dominguez- Perles, D. A. Moreno, B. Muries, C. Alcaraz-Lopez, E. Bastias, C. Garcia- Viguera and M. Carvajal, “Minerals in plant food: effect of agricultural practices and role in human health. A review” , Agronomy for Sustainable Development, vol. 30, 295–309, 2009.

D. L. Massart, B. G. M. Vandeginste, L. M. C. Buydens, S. de Jong, P. J. Lewi and J. Smeyers-Verbeke, “Straight line regression and calibration” , In: “Handbook of chemometrics and qualimetrics” , Amsterdam, The Netherlands, Elsevier, vol. A, 171–231, 1997.

D. Mertens, “AOAC official method 975.03” , In: W. Horwitz, and G. W. Latimer (eds), “Metal in Plants and Pet Foods. Official Methods of Analysis” , 18th edn., Maryland, USA, 3–4, 2005.

K. M. Murphy, K. G. Campbell, S. R. Lyon and S. S. Jones, “Evidence of varietal adaptation to organic farming systems” , Field Crop Research, vol. 102, 172–177, 2007.

K. Özdamar, “Statistical Data Analysis with Computer Programs” , 2nd edn., Eskişehir, Turkey, vol. I-II, 1999.

M. W. Paschke, A. Valdecantos and E. F. Redente, “Manganese toxicity thresholds for restoration grass species. Environmental Pollution” , vol. 135, 313– 322, 2005.

D. C. Rasmusson, “A plant breeder’s experience with ideotype breeding” , Field Crop Res, vol. 26, no 2, 191–200, 1991.

T. L. Roberts, “Nutrient best management practices: Western perspectives on global nutrient stewardship” , Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing World, 172–175, 2010.

G. R. Rout and P. Das, “Effect of metal toxicity on plant growth and metabolism: I. Zinc” , Agronomie, vol. 23, 3–11, 2003.

M. R. Schlemmer, D. D. Francis, J. F. Shanahan and J. S. Schepers, “Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content” , Agronomy Journal, vol. 97, no 1, 106–112, 2005.

U. B. Schulthess, J. Feil and S. C. Jutzi, “Yield independent variation in grain nitrogen and phosphorus concentration among Ethiopian wheat” , Agronomy Journal, vol. 89, no 3, 497–506, 2000.

P. R. Shewry, “Improving the protein content and composition of cereal grain” , Journal of Cereal Science, vol. 46, 239– 250, 2007.

L. Slavkovic, B. Skrbic, N. Miljevic and A. Onjia, “Principal component analysis of trace elements in industrial soils” , Environmental Chemistry Letters, vol. 2, 105–108, 2004.

M. F. Soliman, S. F. Kostandi and M. L. Beusichem-Van, “Influence of sulphur and nitrogen fertilizer on the uptake of iron, manganase and zinc by corn plants grown in calcareous soil comm” , Soil Sci Plant Anal, vol. 23, 1289–1300, 1992.

A. J. Stewart, W. Chapman, G. I. Jenkins, I. Graham, T. Martin and A. Crozier, “The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues” , Plant Cell Enviroment, vol. 24, 1189–1197, 2001.

B. Varga, Z. Svecnjak and A. Pospisi, “Grain yield and yield components of winter wheat grown in two management systems” , Die Bodenkultur, vol. 51, no 3, 145–150, 2002.

H. Wang, X. Q. Shan, B. Wen, S. Zhang and Z. J. Wang, “Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commoelina communis” , Archives of Environmental Contamination and Toxicology, vol. 47, 185–192, 2004.