The explanation of metallic nature of BBi(110) surface

In this study, the structural, elastic and electronic properties for zinc-blende BBi have been investigated by using plane wave ab initio calculations within the density functional theory. The local density approximation was employed to take account of electronic exchange and correlation energies. The lattice constant and bulk modulus are in good agreement with previous theoretical results. The elastic constants are also calculated using the volume-conserving tetragonal and monoclinic strains. The electronic band structure and density of states of BBi are also presented and discussed in detail. Using our results for bulk properties of BBi, we have obtained the atomic relaxed geometry and electronic band structure of the (110) surface of BBi for the first time in the literature. We have also discussed total and partial electronic density of states for BBi(110) surface to explain metallic nature of this surface. At the end of our study, we have compared our surface electronic structure with other metallic (110) surfaces of AlBi, GaBi and InBi.

___

S. Singh, M. Sarwan, Journal Of Optoelectronics and Advanced Materials 12 (2010) 2106.

S. Cui, W. Feng, H. Hu, Z. Feng, Y. Wang, Computational Materials Science 47 (2010) 968.

E. Deligöz, K. Colakoğlu, Y. O. Ciftci, H. Ozisik, Computational Materials Science 39 (2007) 533.

M. Ferhat, A. Zaoui, Physical Review B 73 (2006) 115107.

M. Ferhat, A. Zaoui, Appl. Phys. Lett. 88 (2006) 161902.

D. Madouri, M. Ferhat, Phys. Stat. Sol. (b) 242 (2005) 2856.

S. Q. Wang, H. Q. Ye, Phys. Stat. Sol. (b) 240 (2003) 45. [8] M. Ustundag, M. Aslan, B. G. Yalcin, Computational Materials Science 81 (2014) 471.

B. G. Yalcin, S. Bagci, M. Ustundag, M. Aslan, Computational Materials Science 98 (2015) 136.

S. Kaushik, D. Singh, G. Mishra, Asian Journal of Chemistry 24 (2012) 5655.

K. Amara, B. Soudini, D. Rached, A. Boudali, Computational Materials Science 44 (2008) 635.

B. G. Yalcin, M. Ustundag, M. Aslan, Acta Physica Polonica A 125 (2014) 574.

A. Belabbes, A. Zaoui, M. Ferhat, J. Phys.: Condens. Matter 20 (2008) 415221.

R. M. Wentzcovitch, K. J. Chang, M. L. Cohen, Phys. Rev. B 34 (1986) 1071.

A. Garcia, M. L. Cohen, Phys. Rev. B 47 (1993) 4215.

M. P. Surh, S. G. Louie, M. L. Cohen, Phys. Rev. B 43 (1991) 9126.

R. M. Wentzcovitch, M. L. Cohen, P. K. Lam, Phys. Rev. B 36 (1987) 6058.

O. A. Golikova, Phys. Status Solidi A 51 (1979) 11.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, et al., J. Phys.: Condens. Matter 21 (2009) 395502.

D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.

J. P. Perdew and Y. Wang, Phys. Rev. B 45 (1992) 13244.

N. Troullier, J. L. Martins, Phys. Rev. B 43 (1991) 1993.

W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.

F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 50 (1944) 697.

S. Bağcı, S. Duman, H. M. Tütüncü and G. P. Srivastava, Phys. Rev. B 79 (2009) 125326.

S. Bağcı, S. Duman, H. M. Tütüncü and G. P. Srivastava, G. Uğur, Diam. Relat. Mater. (2006) 1161.

A. Umerski, G. P. Srivastava, Phys. Rev. B 51 (1995) 2334.

H. A. Badehian, H. Salehi, Surf. Sci. 628 (2014) 1.

W. Liu, W. T. Zheng, Q. Jiang, Phys. Rev. B 75 (2007) 235322.

S. Q. Wang, H. Q. Ye, Phys. Rev. B 66 (2002) 235111.