Co-crystal of carbazole-based thiourea derivative compound with acetic acid: Crystallography and Hirshfeld surface analysis

Co-crystal of the N,N´-(((3,6-dichloro-9H-carbazole-1,8-diyl)bis(azanediyl))bis(carbonothioyl))bis(2,2- dimethylpropanamide) as a carbazole-based thiourea derivative (CBT) with acetic acid (AcOH) was prepared and its molecular structure examined using the single crystal X-ray diffraction study and the Hirshfeld surface analysis. The co-crystal was designed to explore the supramolecular synthons and intermolecular interactions diversity between the components of co-crystal. The analysis of the crystal structure and packing revealed that the CBT:AcOH cocrystal are formed by a strong O–H⋯S and C-H···O hydrogen bonding interactions between components of cocrystal. In addition, its’ structure is further stabilized by strong C-H···π stacking interactions and N-H···O and NH ···S homosynthons between CBT molecules. The Hirshfeld surfaces and associated two-dimensional fingerprint plots of the co-crystal were also analyzed to clarify the nature of the hydrogen bond interactions and close intermolecular interactions in the crystal structure. The Hirshfeld surfaces and the associated two-dimensional fingerprint plots analysis revealed that the majority of close contacts forming supramolecular structure were associated with relatively weak interactions such as H···H, C···H and N···H. So, it can be said that these interactions play a major role in molecular crystal packing.

___

C. J. Janiak, “A critical account on π–π stacking in metal complexes with aromatic nitrogencontaining ligands,” Journal of the Chemical Society, Dalton Transactions, vol. 21, pp. 3885- 3896, 2000.

G. R. Desiraju, “C–H⋯O and other weak hydrogen bonds. From crystal engineering to virtual screening,” Chemical Communications, vol. 24, pp. 2995-3001, 2005.

K. Thanigaimani, N. C. Khalib, E. Temel, S. Arshad and I. A. Razak, “New supramo-lecular co-crystal of 2-amino-5-chloro-pyridine with 3- methylbenzoic acids: Synt-heses, structural characterization, Hirshfeld surfaces and quantum chemical investiga-tions,” Journal of Molecular Structure, vol. 1099, pp. 246-256, 2015.

L. Wang, R. A. Friesner and B. J. Berne, “Correction to “Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tem-pering (REST2),” The Journal of Physical Chemistry B, vol. 114, pp. 7294-7309, 2010.

P. A. Wood, F.H. Allen and E. Pidcock, “Hydrogen-bond directionality at the donor H atom—analysis of interaction energies and database statistics,” CrystEngComm, vol. 11, pp. 1563-1571, 2009.

G. R. Desiraju,”Reflections on the Hydro-gen Bond in Crystal Engineering,” Crystal Growth & Design, vol. 11, pp. 896-898, 2011.

K. Aoki, M. Nakagawa, T. Seki and K. Ichimura, “Self-assembly of amphoteric azo-pyridine carboxylic acids Ⅱ: aspect ratio control of anisotropic self-assembled fibers by tuning the π– π stacking interac-tion,” Bulletin of the Chemical Society of Japan, vol. 75, 2533-2539, 2002.

M. Ma and D. Bong, “Determinants of Cyanuric Acid and Melamine Assembly in Water,” Langmuir, vol. 27, 8841-8853, 2011.

J. Janczak, “Supramolecular solid-state architectures formed by co-crystallization of melamine and 2-, 3- and 4-chloro-phenylacetic acids,” Journal of Molecular Structure, vol. 1125, pp. 493-502, 2016.

M. S. Cunha, C. E. P. Ribeiro, C. C. Correa and R. Diniz, “The Hirshfeld surface of three new isonicotinylhydrazine co-crystals: Comparison of hydrogen bonds and crystal structures,” Journal of Molecular Structure, vol. 1150, pp. 586-594, 2017.

G. P. Stahly, “A survey of cocrystals reported prior to 2000,” Crystal Growth & Design, Vol. 9, No. 10, pp. 4212-4229, 2009.

C. B. Aakeröy, M. E. Fasulo and J. Desper “Cocrystal or salt: does ıt really matter?,” Molecular Pharmaceutics, Vol.4, No. 3, pp 317-322, 2007.

M. L. Peterson, M. B. Hickey, M. J. Zaworotko and Ö. Almarsson, ” Expanding the scope of crystal form evaluation in pharmaceutical science,” Journal of Pharmaceutical Sciences, Vol.9, No. 3, pp 317-326, 2006.

E. Nauha, E. Kolehmaninen and M. Nissinen, “Packing incentives and a reliable N–H/N– pyridine synthon in co-crystal-lization of bipyridines with two agro-chemical actives,” CrystEngComm, vol. 13, No. 21, pp. 6531-6537, 2011.

B. Chattopadhyay, S. Ghosh, S. Mondal, M. Mukherjee and A. K. Mukherjee, “Structural study of three o-hydroxy-acetophenone derivatives using X-ray powder diffraction: interplay of weak intermolecular interactions,” CrystEng Comm, vol. 14, No. 3, pp. 837-846, 2012.

H. G. Brittain, “Co-crystal systems of pharmaceutical ınterest: 2011,” Crystal Growth & Design, Vol. 12, pp. 5823-5832, 2012.

N. J. Babu and A. Nangia, “Solubility advantage of amorphous drugs and pharma-ceutical cocrystals,” Crystal Growth & Design, Vol. 11, No. 7, pp. 2662-2679, 2011.

R. Thakuria, A. Delori, W. Jones, M. P. Lipert, L. Roy and N. Rodriguez-Hornedo, “Pharmaceutical cocrystals and poorly soluble drugs,” International Journal of Pharmaceutics, Vol. 453, pp. 101–125, 2013.

R. Czerwonka, K. R. Reddy, E. Baum, H. J. Knölker, “First enantioselective total synt-hesis of neocarazostatin B, determination of its absolute configuration and transforma-tion into carquinostatin A,” Chemical Communication, Vol. 0, pp. 711−713, 2006.

R. Forke, M. P. Krahl, T. Krause, G. Schlechtingen, H. J. Knölker, “Transition metals in organic synthesis, part 82. First total synthesis of methyl 6-methoxy-carbazole- 3-carboxylate, glycomaurrol, the anti-TB active micromeline, and the furo[2,3-c] carbazole alkaloid eustifoline-D,” Synlett, Vol. 2, pp. 268−272, 2007.

O. V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. 42 (2009) 339-341.

L. Palatinus and G. Chapuis, Journal of Applied Crystallography, Vol. 40, pp. 786-790, 2007.

L. Palatinus, A. van der Lee. , Journal of Applied Crystallography, Vol. 41, pp. 975-984, 2008.

L. Palatinus, S. J. Prathapa. S. van Smaalen Journal of Applied Crystallography, Vol. 45, pp. 575-580, 2012.

G. M. Sheldrick, Acta Cryst. C71 (2015) 3-8. Vol. C71, pp. 3-8, 2015.

M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, M. A. Spackman, Crystal Explorer17, University of Western Australia, 2017.

P. A. Gale, “Synthetic indole, carbazole, biindole and indolocarbazole-based recep-tors: applications in anion complexation and sensing,” Chemical Communication, Vol. 0, pp. 4525-4540, 2008.

H. Arslan, “Metal katalizli oksidasyon reaksiyonları için ligand tasarım çalış-maları”. TUBITAK, Proje no: 112T322, (2012).

I. Gumus, “Yeni Karbazol Türevi Redoks Aktif Ligandların ve Metal Kompleks-lerinin Sentezi ve Karakterizasyonu”, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, (2014).