Catalytic Effect of Ni and Cu Embedded Graphene Surface on SO2 Decomposition Reaction

SO2 decomposition reaction on Ni and Cu embedded graphene surfaces were investigated using density functional theory. Grime D2 correction was used for Van der Waals interactions that could be induced by the interactions between adsorbed structures and surface. Metal embedded graphene systems are more likely to be cheaper than according to their bulk state since less amount of metal atom are used, experimentally synthesizable. Firstly, the charge density on metal embedded systems and SO2 adsorbed on both surface was displayed with the electron density difference map and investigated with the Bader charge analysis. Then, the sequential dissociation of SO2 were systematically investigated. Finally, SOx molecules and their decomposed geometries were obtained and CINEB method were performed to find activation barriers related to SOx+yO. It is concluded that Cu embedded graphene surface is more favorable than Ni embedded graphene surface in terms of activation energetics. Cu-based graphene materials can be used as catalyst an efficient and cheap in SO2 decomposition.

___

[1] T. Wei and B. Khoshnevis, “Integration of process planning and scheduling: a review,” Journal of Intelligent Manufacturing, vol. 24, no. 6, pp. 51–63, 2000.

[2] P. R. Buseck, and M. Pósfai, “Airborne minerals and related aerosol particles: Effects on climate and the environment,” Proceedings of the National Academy of Sciences, vol. 96, no. 7, pp. 3372-3379, 1999.

[3] A. Piéplu, O. Saur, J. C. Lavalley, O. Legendre, and C. Nédez, “Claus catalysis and H2S selective oxidation,” Catalysis Reviews, vol. 40, no. 4, pp. 409-450, 1998.

[4] X. Wei, C. Dong, Z. Chen, K. Xiao, X. Li, “Density functional theory study of SO2- adsorbed Ni (1 1 1) and hydroxylated NiO (111) surface,” Applied Surface Science, vol. 355, pp. 429-435, 2015.

[5] Y. Sakai, M. Koyanagi, K. Mogi, and E. Miyoshi, “Theoretical study of adsorption of SO2 on Ni (111) and Cu (111) surfaces,” Surface Science, vol. 513, no. 2, pp. 272- 282, 2002.

[6] T. Nakahashi, S. Terada, T. Yokoyama, H. Hamamatsu, Y. Kitajima, M. Sakano, T. Ohta, “Adsorption of SO2 on Cu (100) studied by X-ray absorption fine structure spectroscopy and scanning tunneling microscopy,” Surface Science, vol. 373, no. 1, pp. 1-10, 1997.

[7] R. Streber, C. Papp, M. P. A. Lorenz, O. Höfert, E. Darlatt, A. Bayer, H. P. Steinrück, “SO2 adsorption and thermal evolution on clean and oxygen precovered Pt(111),” Chemical Physics Letters,vol. 494 no. 4-6, pp. 188-192, 2010.

[8] M. Xia, R. Yue, P. Chen, M. Wang, T. Jiao, L. Zhang, L. Li, “Density functional theory investigation of the adsorption behaviors of SO2 and NO2 on a Pt (111) surface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 568, pp. 266- 270, 2019.

[9] M. S. Wilburn, W. S. Epling, “SO2 adsorption and desorption characteristics of Pd and Pt catalysts: Precious metal crystallite size dependence,” Applied Catalysis A: General, vol. 534, pp. 85-93, 2017.

[10] D. Fu, W. Guo, M. Li, H. Zhu, Y. Liu, “Adsorption and reaction mechanisms of SO2 on Rh (111) surface: A first-principle study,” Journal of Molecular Structure, vol. 1062, pp. 68-76, 2014.

[11] T. Yokoyama, S. Terada, S. Yagi, A. Imanishi, S. Takenaka, Y. Kitajima, T. Ohta, “Surface structures and electronic properties of SO2 adsorbed on Ni (111) and Ni (100) studied by S K-edge X-ray absorption fine structure spectroscopy,” Surface Science, vol. 324, no. 1, pp. 25-34, 1995.

[12] L. Wilde, M. Polcik, J. Haase, B. Brena, D. Cocco, G. Comelli, G. Paolucci “Adsorption and temperature-dependent decomposition of SO2 on Ni (110): an XPS and XAFS study,” Surface Science, vol. 405, no. 2-3, pp. 215-227, 1995.

[13] T. Yokoyama, A. Imanishi, S. Terada, H. Namba, Y. Kitajima, T. Ohta, “Electronic properties of SO2 adsorbed on Ni (100) studied by UPS and O K-edge NEXAFS,” Surface science, vol. 334, no. 1-3, pp. 88- 94,1995.

[14] G. J. Jackson, S. M. Driver, D. P. Woodruff, N. Abrams, R. G. Jones, M. T. Butterfield, V. Formoso, “A structural study of the interaction of SO2 with Cu (111),” Surface Science, vol. 459 no. 3, pp. 231- 244, 2000.

[15] S. Terada, T. Yokoyama, M. Sakano, M. Kiguchi, Y. Kitajima, T. Ohta, “Asymmetric surface structure of SO2 on Pd (111) studied by total-reflection X-ray absorption fine structure spectroscopy,” Chemical physics letters, vol. 300, no. 5-6, pp. 645-650, 1999.

[16] M. J. Ungerer, D. Santos-Carballal,A. CadiEssadek, C. G. Van Sittert, N. H. De Leeuw, “Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study,” Catalysts, vol. 10, no. 5, pp. 558, 2020.

[17] J. A. Rodriguez, P. Liu, J. Dvorak, T. Jirsak, J. Gomes, Y. Takahashi, K. Nakamura, “Adsorption and decomposition of SO2 on TiC (0 0 1): An experimental and theoretical study,” Surface Science, vol. 543, no. 1-3, pp. 675-682, 2003.

[18] J. A. Rodriguez, G. Liu, T. Jirsak,J. Hrbek, Z. Chang, J. Dvorak, A. Maiti, “ Activation of gold on titania: Adsorption and reaction of SO2 on Au/TiO2 (110),” Journal of the American Chemical Society, vol. 124, no. 18, pp. 5242-5250, 2002.

[19] L. Wang, Q. Luo, W. Zhang, J. Yang, “Transition metal atom embedded graphene for capturing CO: a first-principles study,” International Journal of Hydrogen Energy, vol. 39, no. 35, pp. 20190-20196, 2014.

[20] V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, “Graphene based materials: past, present and future” Progress in Materials Science, vol. 56, no. 8, pp. 1178-1271, 2011.

[21] N.O. Weiss, H. Zhou, L. Liao, Y. Liu, S. Jiang, Y. Huang, “Graphene: an emerging electronic material” Advanced Materials, vol. 24, no. 43, pp. 5782-5825, 2012.

[22] M.R. Islam, K. Liu, Z. Wang, S. Qu, C. Zhao, X. Wang, Z. Wang, “Impact of defect and doping on the structural and electronic properties of monolayer boron phosphide,” Chemical Physics, vol. 542, pp. 111054, 2021.

[23] Giannozzi P, et al. “Quantum espresso: a modular and open source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, no. 39, pp. 395502, 2009.

[24] H. J. Monkhorst, J. D. Pack, “Special points for Brillouin-zone integrations,” Physical Review B, vol. 13, no. 12, pp. 5188, 1976.

[25] G. Kresse, D. Joubert “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, vol. 59, no. 3, pp. 1758, 1999.

[26] Grime S, et al. “A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,” The Journal of Chemical Physics, vol. 132, no. 15, pp. 154104, 2010.

[27] H. Jonsson, G. Mills, K. W. Jónsson, H. Jacobsen, W. Karsten, “Nudged elastic band method for finding minimum energy paths of transitions,” 1998.

[28] G. Henkelman, B. P. Uberuaga, H. Jónsson, “A climbing image nudged elastic band method for finding saddle points and minimum energy paths,” The Journal of Chemical Physics, vol. 113, no. 22, pp. 9901-9904, 2000.

[29] M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek, G. R. Hutchison, “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform,” Journal of Cheminformatics, vol. 4, no. 1, pp. 1-17, 2012.

[30] O. I. Malyi, K. Sopiha, V. V. Kulish, T. L. Tan, S. Manzhos, C. Persson, “A computational study of Na behavior on graphene,” Applied Surface Science, vol. 333, pp. 235-243, 2015.

[31] A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, R. M. Nieminen, “Embedding transition-metal atoms in graphene: structure, bonding, and magnetism,” Physical review letters, vol. 102, no. 12, pp. 126807, 2009.

[32] R. Jiang, W. Guo, M. Li, H. Zhu, J. Li, L. Zhao, H. Shan, “Density functional study of the reaction of SO2 on Ir (111),” The Journal of Physical Chemistry C, vol. 113, no. 42, 18223-18232, 2009.

[33] D. Fu, W. Guo, M. Li, H. Zhu, Y. Liu, “Adsorption and reaction mechanisms of SO2 on Rh (111) surface: A first-principle study,” Journal of Molecular Structure, vol. 1062, pp. 68-76, 2014.

[34] J. A. Rodriguez, J. M. Ricart, A. Clotet, F. Illas, “Density functional studies on the adsorption and decomposition of SO2 on Cu (100),” The Journal of Chemical Physics, vol. 115, no. 1, pp. 454-465, 2001.

[35] G. E. Pitti, Estudio de propiedades estructurales y electrónicas del hierro, silicio y aluminio utilizando el Software Burai (GUI de Quantum Espresso).
Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1301-4048
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi Fen Bilimleri Enstitüsü