A different approach for almost sequence spaces defined by a generalized weighted means

In this study, we introduce (, ), (, ) and (, ) sequence spaces which consisting of all the sequences whose generalized weighted -difference means are found in , and spaces utilising generalized weighted mean and -difference matrices. The -and the -duals of the spaces (, ) and (, ) are determined. At the same time, we have characterized the infinite matrices ((, ): ) and (: (, )), where is any given sequence space.

Bir genelleştirilmiş ağırlıklı ortalama ile tanımlanan hemen hemen yakınsak dizi uzayları için bir farklı yaklaşım

Bu çalışmada, B-fark matrisi ile genelleştirilmiş ağırlıklı ortalama metodu yardımıyla inşa edilen (, ), (, ) ve (, ) dizi uzayları tanımlandı. Bu uzaylar, genelleştirilmiş ağırlıklı -fark ortalamaları sırasıyla , ve uzaylarında olan dizilerin uzayıdır. (, ) ve (, ) uzaylarının - ve -dualleri elde edildi. Ayrıca, herhangi bir dizi uzayı olmak üzere ((, ): ) ve (: (, )) sonsuz matrisleri karakterize edildi.

___

B. Choudhary and S. Nanda, “Functional Analysis with applications,” John Wiley and Sons, New Delhi, ndia ̇ , 1989

G. G. Lorentz, “A contribution to the theory of divergent sequences,” Acta Mathematica, Vol. 80, pp. 167-190, 1948.

H. Kızmaz, “On certain sequence spaces,” Canad. Math. Bull. Vol. 24, no.2, pp.169-176, 1981.

M. Kirisçi, “Almost convergence and generalized weighted mean,” AIP Conf. Proc, Vol. 1470, pp. 191–194, 2012.

F. Başar and M. Kirisçi, “Almost convergence and generalized difference matrix,” Comput. Math. Appl., Vol. 61, pp. 602-611, 2011.

K. Kayaduman and M. Şengönül, “On the Riesz almost convergent sequence space,” Abstr. Appl. Anal. Vol. 2012, article ID: 691694, 18 pages, 2012.

M. Candan, “Almost convergence and double sequential band matrix,” Acta Math. Scientia, Vol. 34, no. 2, pp. 354–366, 2014.

D. Butkovic, H. Kraljevic and N. Sarapa “On the almost convergence,” in Functional analysis, II, Lecture Notes in Mathematics, Vol. 1242, 396417, Springer, Berlin, Germany, 1987.

M. Kirisçi, “Almost convergence and generalized weighted mean II,” J. Ineq. and Appl, Vol.1, no.93, 13 pages, 2014.

H. Polat, V. Karakaya and N. Şimşek, “Difference sequence space reproduced by using a generalized weighted mean,” Applied Mathematics Letters, Vol. 24, pp. 608–614, 2011.

A. Karaisa and F. Başar, “Some new paranormed sequence spaces and core theorems,” AIP Conf. Proc. Vol. 1611, pp. 380–391, 2014.

A. Karaisa and F. Özger, “Almost difference sequence spaces reproduced by using a generalized weighted mean,” J. Comput. Anal. and Appl., Vol. 19, no. 1, pp. 27–38, 2015.

K. Kayaduman and M. Şengönül, “The space of Cesaro almost convergent sequence and core theorems,” Acta Mathematica Scientia, Vol. 6, pp. 2265–2278, 2012.

A. M. Jarrah and E. Malkowsky, “BK- spaces, bases and linear operators,” Ren. Circ. Mat. Palermo, Vol. 2, no. 52, pp. 177–191, 1990.

J. A. Sıddıqi, “Infinite matrices summing every almost periodic sequences,” Pacific J. Math, Vol. 39, no. 1, pp. 235–251, 1971.

F. Başar, “Summability Theory and Its Applications,” Bentham Science Publishers ebooks, Monographs, xi+405 pp, ISB:978-1-60805- 252-3, İstanbul, (2012).

J. P. Duran, “Infinite matrices and almost convergence,” Math. Z. Vol.128, pp.75-83, 1972.

E. Öztürk, “On strongly regular dual summability methods,” Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., Vol. 32, p. 1-5, 1983.

J. P. King, “Almost summable sequences,” Proc. Amer. Math. Soc. Vol. 17, pp. 1219–1225, 1966.

F. Basar and İ. Solak, “Almost-coercive matrix transformations,” Rend. Mat. Appl. Vol. 7, no.11, pp. 249–256, 1991.

F. Başar, “-conservative matrix sequences” Tamkang J. Math, Vol. 22, no. 2, pp. 205–212, 1991.

F. Başar and R. Çolak, “Almost-conserva- tive matrix transformations,” Turkish J. Math, Vol. 13, no.3, pp. 91- 100, 1989.

F. Başar, “Strongly-conservative sequence to series matrix transformations,” Erc. Üni. Fen Bil. Derg. Vol. 5, no.12, pp. 888–893, 1989.

M. Candan and K. Kayaduman, “Almost Convergent sequence space Reproduced By Generalized Fibonacci Matrix and Fibonacci Core,” British J. Math. Comput. Sci, Vol. 7, no.2, pp.150- 167, 2015.

M. Candan, “Domain of Double Sequential Band Matrix in the Spaces of Convergent and Null Sequences,” Advanced in Difference Equations, Vol.1, pp. 1-18, 2014.

M. Candan and A. Güneş, “Paranormed sequence spaces of Non Absolute Type Founded Using Generalized Difference Matrix,” Proceedings of the National Academy of Sciences; India Section A: Physical Sciences, Vol. 85, no.2, pp. 269- 276, 2014.

M. Candan, “A new Perspective On Paranormed Riesz sequence space of Non Absolute Type,” Global Journal of Mathematical Analysis, Vol. 3, no. 4, pp. 150–163, Doi: 10.14419/gjma.v3i4.5335, 2015.

E. E. Kara and M. İlkhan, “Some Properties of Generalized Fibonacci Sequence Spaces,” Linear and Multilinear Algebra, Vol. 64, no. 11, pp. 2208- 2223, 2016.

S. Ercan and Ç. A. Bektaş, “On some sequence spaces of non-absolute type,” Kragujevac J. Math., Vol. 38, no. 1, pp. 195-202, 2014.

S. Ercan and Ç. A. Bektaş, “On new −Convergent Difference BK-spaces,” J. Comput. Anal. Appl., Vol. 23, no. 5, pp. 793-801, 2017.

M. Başarır and E. E. Kara, “On the B-Difference Sequence Spaces Derived by Generalized Weighted Mean and Compact Operators,” Journal of Mathematical Analysis and Applications, Vol. 391, no. 1, pp. 67-81, 2012.

M. Başarır and E. E. Kara, “On the mth Difference Sequence Space of Generalized Weighted Mean and Compact Operators,” Acta Mathematica Scienta, Vol. 33, no. B(3), pp. 797-813, 2013.

M. Başarır and E. E. Kara, “On Compact Operators on the Riesz Bm-Difference Sequence Space,” Iranian Journal of Science & Technology, Vol.35, no. A4, pp. 279-285, 2011.

M. Başarır and E. E. Kara, “On some Difference Sequence Spaces of Weighted Means and Compact Operators,” Annals of Functional Analysis, Vol.2, no. 2 pp. 116-131, 2011.

E. E. Kara, “Some Topological and Geometrical Properties of New Banach Sequence Spaces,” Journal of Inequalities and Applications, Vol. 2013, no. 38, 16 Pages, 2013, doi:10.1186/1029-242X2013-38.

E. E. Kara and M. İlkhan, “ On Some Banach Sequence Spaces Derived by a New Band Matrix,” British Journal of Mathematics & Computer Science, Vol.9, no. 2, pp. 141-159, 2015.