5-bromo-1h benzimidazolun ft-raman, ft-ir, nmr ölçümleri ve dft hesaplamalari

Bu makalede 5-bromo-1h benzimidazolun (5Br1HB) spektroskopik özellikleri FT-Raman ve FT-IR spektral teknikleriyle incelendi. Optimize yapının titreşim spektrumlarının, Mulliken ve NMR analizinin tablosunu oluşturmak için Yoğunluk Fonksiyoneli Teorisi (YFT) hesaplamaları B3LYP/6-311+G(d,p) metoduyla hesaplandı. Başlıktaki molekül için elektronik yapı özellikleri (HOMO-LUMO ve moleküler elektrostatik potansiyel yüzey (MEP)) TDDFT/B3LYP/6-311+G(d,p) Bu makalede 5-bromo-1h benzimidazolun (5Br1HB) spektroskopik özellikleri FT-Raman ve FT-IR spektral teknikleriyle incelendi. Optimize yapının titreşim spektrumlarının, Mulliken ve NMR analizinin tablosunu oluşturmak için Yoğunluk Fonksiyoneli Teorisi (YFT) hesaplamaları B3LYP/6-311+G(d,p) metoduyla hesaplandı. Başlıktaki molekül için elektronik yapı özellikleri (HOMO-LUMO ve moleküler elektrostatik potansiyel yüzey (MEP)) TDDFT/B3LYP/6-311+G(d,p) metodu kullanılarak gerçekleştirildi. Deneysel değerlerle teorik değerler çok iyi uyum Bu makalede 5-bromo-1h benzimidazolun (5Br1HB) spektroskopik özellikleri FT-Raman ve FT-IR spektral teknikleriyle incelendi. Optimize yapının titreşim spektrumlarının, Mulliken ve NMR analizinin tablosunu oluşturmak için Yoğunluk Fonksiyoneli Teorisi (YFT) hesaplamaları B3LYP/6-311+G(d,p) metoduyla hesaplandı. Başlıktaki molekül için elektronik yapı özellikleri (HOMO-LUMO ve moleküler elektrostatik potansiyel yüzey (MEP)) TDDFT/B3LYP/6-311+G(d,p) metodu kullanılarak gerçekleştirildi. Deneysel değerlerle teorik değerler çok iyi uyum gösterdi.gösterdi.metodu kullanılarak gerçekleştirildi. Deneysel değerlerle teorik değerler çok iyi uyum gösterdi.

Ft-raman, ft-ir, nmr and dft calculations of 5-bromo-1h benzimidazole

This paper were investigated spectroscopic studies of 5-bromo-1h benzimidazole (5Br1HB) with FT-Raman and FTIR spectral techniques. To produce a tables of vibrational spectra, Mulliken and NMR analysis, density functional theory (DFT) calculations with B3LYP/6-311+G(d,p) level of theory were calculated for optimized structure. Features of the electronic structure (HOMO-LUMO and molecular electrostatic potential surface (MEP)) of 5Br1HB were performed using TD-DFT/B3LYP/6-311+G(d,p) method. The theoretical values with the experimental values showed very good agreement.

___

  • Charansingh, G., Ganesh, J., Mohammad, S., Rajesh, K., Anant, G., Deepak, N., Mahendra, S.,” Clubbed [1, 2, 3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis”, Bioorg. Med. Chem. Lett. 2008, 18, 6244.
  • Orjales, A.; Mosquera, R.; Labeaga, L.; Rodes, R. “New 2-piperazinylbenzimidazole derivatives as 5-HT3 antagonists. Synthesis and pharmacological evaluation”, J. Med. Chem. 1997, 40, 586.
  • Grimmett, M. R., Katritzky, A. R., Rees, C. W., Scriven, “Comprehensive Heterocyclic Chemistry II”, E. F. V., Eds.; Pergamon Press: Oxford, 1996. Vol. 3, pp. 77–220
  • (a) J. Mann, A. Baron, Y. Opoku-Boahen, E. Johansson, G. Parkinson, L.R. Kelland, S. Neidle, “A new class of symmetric bisbenzimidazolebased DNA minor groove-binding agents showing antitumor activity”, J. Med. Chem. 44 (2001) 138– 144 (b) N.T. Abdel-Ghani, A.M. Mansour, “Novel palladium (II) and platinum (II) complexes with 1H-benzimidazol-2-ylmethyl-N-(4-bromophenyl)-amine: structural studies and anticancer activity”, Eur. J. Med. Chem. 47 (2012) 399–411.
  • N.M. Goudgaon, V. Dhondiba, A. Vijayalaxmi, “Synthesis and antimicrobial activity of N-1 substituted benzimidazoles”, Indian J. Heterocycl. Chem. 13 (2004) 271–272
  • N.T. Abdel-Ghani, A.M. Mansour, “Molecular structures of 2-arylaminomethyl-1Hbenzimidazole: Spectral, electrochemical, DFT and biological studies”, Spectrochim. Acta A 91 (2012) 272–284.
  • P.N. Preston, “Synthesis, reactions, and spectroscopic properties of benzimidazoles”, Chem. Rev. 74 (1974) 279–314.
  • S. Mohan, “FTIR and Raman studies on benzimidazole”, Spectrochim. Acta, A 47 (1991) 1111.
  • T.D. Klots, P. Devlin, W.B. Collier, “Heteroatom derivatives of indene: V. Vibrational spectra of benzimidazole1Contribution number 368 from the Bartlesville Thermodynamics Group. 1”, Spectrochim. Acta, A 53 (1997) 2445.
  • M.A. Morsy, M.A. Al-Khadi, A. Suwaiyan, “Normal Vibrational Mode Analysis and Assignment of Benzimidazole by ab Initio and Density Functional Calculations and Polarized Infrared and Raman Spectroscopy”, J. Phys. Chem. A 106 (2002) 9196.
  • S. Yurdakul, C. Yilmaz, “Vibrational spectroscopic investigations of M (benzimidazole) 2 Ni (CN) 4 and Cd (benzimidazole) Cl 2 complexes”, Vibrational Spectrosc. 21 (1999) 127.
  • http://cccbdb.nist.gov/vsfx.asp.
  • J. Baker, A.A. Jarzecki, P. Pulay, “Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields”, J. Phys. Chem. A102 (1998) 1412–1424.
  • P. Pulay, J. Baker, K. Wolinski, 2013 Green AcresRoad, Suite A, Fayettevile, AR72703, USA.
  • M.E. Casida, J.M. Seminario (Eds.), Recent Developments and Applications of Modern Density Functional Theory, Theoretical and Computational Chemistry, vol. 4, Elsevier, Amsterdam, 1996, p. 391.
  • E.B. Sas, M. Kurt, M. Karabacak, A. Poiyamozhi, N. Sundaraganesan, “FT-IR, FT-Raman, dispersive Raman, NMR spectroscopic studies and NBO analysis of 2-Bromo-1H-Benzimidazol by density functional method”, Journal of Molecular Structure 1081 (2015) 506–518.
  • Long-Huai Cheng, Zheng Zheng, Zhi-Li Han, Zhi-Chao Wu, Hong-Ping Zhou, “2-[4-(1H-1,2,4- Triazol-1-yl)phenyl]-1H-benzimidazole”, Acta Cryst. E68 (2012) o2890. ISSN 1600.
  • V. Arjunan, A. Raj, C.V. Mythili, S. Mohan, “Vibrational, electronic and quantum chemical studies of 5-benzimidazole carboxylic acid”, Journal of Molecular Structure 1036 (2013) 326– 340
  • T.S. Xavier, N. Rashid, I. H. Joe, “Vibrational spectra and DFT study of anticancer active molecule 2-(4-Bromophenyl)-1H-benzimidazole by normal coordinate analysis”, Spectrochimica Acta Part A 78 (2011) 319–326
  • N. Puviarasan, V. Arjunan, S. Mohan, “FT-IR and FT-Raman studies on 3-aminophthalhydrazide and N-aminophthalimide”, Turk.J. Chem.,2002, 26, 323.
  • N. T. A. Ghani, A. M. Mansour, “Molecular structures of 2-arylaminomethyl-1Hbenzimidazole: Spectral, electrochemical, DFT and biological studies”, Spectrochimica Acta Part A, 91 (2012) 272–284
  • N. T. A. Ghani, A. M. Mansour, “Molecular structure of 2-chloromethyl-1H-benzimidazole hydrochloride: Single crystal, spectral, biological studies, and DFT calculations”, Spectrochimica Acta Part A, 86 (2012) 605–613
  • G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: New York, 1969.
  • V. Krishnakumar, V. Balachandran, T. Chithambarathanu, “Density functional theory study of the FT-IR spectra of phthalimide and Nbromophthalimide”, Spectrochim. Acta,2005, 62A, 918.
  • V. Krishnakumar, R. John Xavier, “Normal coordinate analysis of 2-mercapto and 4, 6- dihydroxy-2-mercapto pyrimidines”, Indian J. Pure Appl. Phys.,2003, 41, 597.
  • V. Krishnakumar, V.N. Prabavathi,“Simulation of IR and Raman spectral based on scaled DFT force fields: A case study of 2-amino 4-hydroxy 6- trifluoromethylpyrimidine, with emphasis on band assignment”, Spectrochim. Acta, 2008, Part A 71, 449.
  • F. Weinhold, C. R. Landıs, ,“Natural bond orbitals and extensions of localized bonding concepts”, Chemistry Education Research and Practice in Europe, 2001, 2, 2, 91–104
  • D.N. Sathyanarayana, Vibrational Spectroscopy – Theory and Applications, second ed., New Age International (P) Limited Publishers, New Delhi, 2004.
  • V. KrishnaKumar, R. John Xavier, “Normal coordinate analysis of 2-mercapto and 4, 6- dihydroxy-2-mercapto pyrimidines”, Ind. J. Pure Appl. Phys. 41 (2003) 95.
  • G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, vol. 1, Adam Hilger, London, 1974.
  • S. Pinchas, D. Samuel, M. Weiss-Broday, “329. The infrared absorption of 18 O-labelled benzamide”, J. Chem. Soc. 1688. (1961).
  • L. Kahovec, K.W.F. Kohlreusch, “Studien zum Raman-Effekt”, Monatsh. Chem. 74 (1941) 333.
  • R. Ditchfield, J. Chem. Phys.,1972, 56 ,5688– 5691.
  • K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc.,1990, 112, 8251–8260.
  • H.O. Kalinowski, S. Berger, S. Braun, “Carbon– 13 NMR spectroscopy”, John Wiley and Sons, Chichester, 1988
  • K. Pihlaja, E. Kleinpeter (Eds.), “Carbon–13 chemical shifts in Structural and Sterochemical Analysis”, VCH Publishers, Deerfield Beach, 1994
  • I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
  • K. Fukui, “Role of frontier orbitals in chemical reactions”, Science 218, 1982, 747-754.
  • E. Scrocco, J. Tomasi, “Electronic molecular structure, reactivity and intermolecular forces: aneuristic interpretation by means of electrostatic molecular potentials”, Adv. Quantum Chem. 11 (1978) 115–121.
  • C. Muñoz-Caro, A. Niño, M.L. Sement, J.M. Leal, S. Ibeas,” Modeling of protonation processes in acetohydroxamic acid”, J. Org. Chem. 65 (2000) 405–410.
  • P. Politzer, K.C. Daiker, The Force Concept in Chemistry, Van Nostrand Reinhold Co., 1981.
  • P. Politzer, P.R. Laurence, K. Jayasuriya, in: J. McKinney, Structure Activity Correlation in Mechanism Studies and Predictive Toxicology, Special Issue of Environ. Health Perspect., vol. 61, 1985, p. 191.
  • P. Politzer, J.S. Murray, in: D.L. Protein, R. Beveridge, R. Lavery (Eds.), Theoretical Biochemistry and Molecular Biophysics: A Comprehensive Survey, vol. 2, Adenine Press, Schenectady, NY, 1991, pp. 165–191.
  • E. Scrocco, J. Tomasi, Topics in Current Chemistry, vol. 42, Springer Verlag, Berlin, 1973.
  • P. Politzer, D.G. Truhlar (Eds.), Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, NY, 1981.