Mitofaji ve Obezite

Obezitede aşırı beslenme ve yüksek yağlı diyetler, enerji homeostazında ve aerobik solunumda bozulmalara, ROS üretiminde artışa ve inflamasyon durumu gibi bir çok metabolik değişikliğe sebep olmaktadır. Obezite aracılı meydana gelen oksidatif stres ve düşük seviyeli kronik inflamasyon, Tip 2 Diabetes Mellitus gibi metabolik sendromla ilişkili hastalıkların patofizyolojisinde rol oynayan mitokondriyal homeostazın bozulmasına neden olabilir. Mitokondri organeli enerji ve kalsiyum homeostazında, hücre metabolizmasında hatta kanser metabolizmasında etkin rol oynamaktadır. Mitokondriyal kurtarma operasyonu olarak bilinen mitofaji, obez hastalarda mitokondriyal hemostazın korunmasına ve hücresel anormalliklerin iyileşmesine büyük katkı sağlayan kritik bir faktör olarak düşünülmektedir. Bu derlemenin amacı, obezite patofizyolojisinde mitokondriyal disfonksiyon gelişiminin ve mitofajinin koruyucu etkisinin güncel ve kapsamlı bir özetini sunmaktır.

___

  • Referans1 Bhansali S, Bhansali A, Dhawan V. Favourable metabolic profile sustains mitophagy and prevents metabolic abnormalities in metabolically healthy obese individuals. Diabetology and Metabolic Syndrome [Internet]. 2017;9(1) doi:10.1186/s13098-017- 0298-x.
  • Referans2 Ghanemi A, Melouane A, Yoshioka M, St-Amand J. Exercise and high-fat diet in obesity: Functional genomics perspectives of two energy homeostasis pillars. Genes (Basel). 2020;11(8):1–16.
  • Referans3 Manna P and SKJain. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metabolic syndrome and related disorders [Internet]. [date unknown];
  • Referans4 de Pergola G, Silvestris F. Obesity as a Major Risk Factor for Cancer. Journal of Obesity. 2013;2013:1–11. Referans5 Annual Review and Report 2020[date unknown]. Available from: www.worldobesity.org.
  • Referans6 Halberg N, Wernstedt-Asterholm I, Scherer PE. The Adipocyte as an Endocrine Cell. Endocrinology and Metabolism Clinics of North America. 2008;37(3):753–68.
  • Referans7 Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proceedings of the Nutrition Society. 2009;68(4):370–7.
  • Referans8 Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochemical and Biophysical Research Communications. 2017;482(3):426–31.
  • Referans9 de Mello AH, Costa AB, Engel JDG, Rezin GT. Mitochondrial dysfunction in obesity. Life Sciences. 2018;192:26–32. Referans10 Lee H, Lee IS, Choue R. Obesity, Inflammation and Diet. Pediatric Gastroenterology, Hepatology & Nutrition. 2013;16(3):143.
  • Referans11 Exley MA, Hand L, O’Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. Journal of Endocrinology. 2014;223(2):R41–8.
  • Referans12 Silva Rosa SC, Nayak N, Caymo AM, Gordon JW. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiological Reports [Internet]. 2020;8(19) doi:10.14814/phy2.14607. 9
  • Referans13 Fu T, Xu Z, Liu L, et al. Mitophagy Directs Muscle-Adipose Crosstalk to Alleviate Dietary Obesity. Cell Reports. 2018;23(5):1357–72.
  • Referans14 Tong M, Saito T, Zhai P, et al. Alternative Mitophagy Protects the Heart Against Obesity-Associated Cardiomyopathy. Circulation Research. 2021;129(12):1105–21.
  • Referans15 Arner E, Westermark PO, Spalding KL, et al. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology. Diabetes. 2010;59(1):105–9.
  • Referans16 Ohashi K, Shibata R, Murohara T, Ouchi N. Role of anti-inflammatory adipokines in obesity-related diseases. Trends in Endocrinology & Metabolism. 2014;25(7):348–55.
  • Referans17 ORAN K, GHEYBİ A, ÇELİK F, et al. Investigation of Gene Polymorphisms of Vaspin, Visfatin and Chemerin in Diabetic Obese and Non-Diabetic Obese Patients. Journal of Health Services and Education. 2021;5 (2)(5 (2)):33–8.
  • Referans18 Bastard J-P, Maachi M, Lagathu C, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.
  • Referans19 Killackey SA, Philpott DJ, Girardin SE. Mitophagy pathways in health and disease. J Cell Biol. 2020;219(11).
  • Referans20 Blaszczak AM, Jalilvand A, Hsueh WA. Adipocytes, Innate Immunity and Obesity: A Mini-Review. Frontiers in Immunology [Internet]. 2021;12 doi:10.3389/fimmu.2021.650768.
  • Referans21 Das M, Sauceda C, Webster NJG. Mitochondrial Dysfunction in Obesity and Reproduction. Endocrinology (United States). 2021;162(1).
  • Referans22 Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, Oxidative Stress, and Obesity. International Journal of Molecular Sciences. 2011;12(5):3117–32.
  • Referans23 Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. Journal of Physiology and Biochemistry. 2012;68(4):701–11.
  • Referans24 Schieber M, Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Current Biology. 2014;24(10):R453–62.
  • Referans25 Bournat JC, Brown CW. Mitochondrial Dysfunction in Obesity. [date unknown]; doi:10.1097/MED.
  • Referans26 Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends in Endocrinology & Metabolism. 2012;23(9):435–43.
  • Referans27 Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. Journal of Clinical Investigation [Internet]. 2008; doi:10.1172/JCI32601.
  • Referans28 Chattopadhyay M, Khemka VK, Chatterjee G, Ganguly A, Mukhopadhyay S, Chakrabarti S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Molecular and Cellular Biochemistry. 2015;399(1–2):95–103. 10
  • Referans29 LIM J, LEE H, HOJUNG M, SONG J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: A molecular mechanism leading to hepatic insulin resistance. Cellular Signalling. 2009;21(1):169–77.
  • Referans30 Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism. 2016;65(8):1049–61.
  • Referans31 Petersen MC, Shulman GI. Mechanisms of Insulin Action and Insulin Resistance. Physiological Reviews. 2018;98(4):2133–223.
  • Referans32 Muoio DM. Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock. Cell. 2014;159(6):1253–62.
  • Referans33 Rong JX, Qiu Y, Hansen MK, et al. Adipose Mitochondrial Biogenesis Is Suppressed in db/db and High-Fat Diet–Fed Mice and Improved by Rosiglitazone. Diabetes. 2007;56(7):1751–60.
  • Referans34 Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte Mitochondrial Function Is Reduced in Human Obesity Independent of Fat Cell Size. The Journal of Clinical Endocrinology & Metabolism. 2014;99(2):E209–16.
  • Referans35 Xu Y , Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? Journal of Medicinal Chemistry. 2020;63(23):14276– 307.
  • Referans36. Pileggi CA, Parmar G, Harper ME. The lifecycle of skeletal muscle mitochondria in obesity. Obesity Reviews. 2021;22(5).
  • Referans37 Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Annals of Neurology. 2004;56(3):336–41.
  • Referans38 Hanna RA, Quinsay MN, Orogo AM, Giang K, Rikka S, Gustafsson ÅB. Microtubule- associated Protein 1 Light Chain 3 (LC3) Interacts with Bnip3 Protein to Selectively Remove Endoplasmic Reticulum and Mitochondria via Autophagy. Journal of Biological Chemistry. 2012;287(23):19094–104.
  • Referans39 Simoneau J, Colberg SR, Thaete FL, Kelley DE. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. The FASEB Journal. 1995;9(2):273–8.
  • Referans40 Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000;49(4):467–72.
  • Referans41 Wu W, Xu H, Wang Z, et al. PINK1-Parkin-Mediated Mitophagy Protects Mitochondrial Integrity and Prevents Metabolic Stress-Induced Endothelial Injury. PLOS ONE. 2015;10(7):e0132499.
  • Referans42 Putti R, Sica R, Migliaccio V, Lionetti L. Diet impact on mitochondrial bioenergetics and dynamics. Frontiers in Physiology [Internet]. 2015;6 doi:10.3389/fphys.2015.00109. 11
  • Referans43 Chen M, Chen Z, Wang Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016;12(4):689–702.
  • Referans44 Ricci C, Marzocchi C, Riolo G, et al. The impact of CPT1B rs470117, LEPR rs1137101 and BDNF rs6265 polymorphisms on the risk of developing obesity in an Italian population. Obesity Research & Clinical Practice. 2021;15(4):327–33.
  • Referans45 Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy- in neurodegenerative diseases. Human Molecular Genetics [Internet]. 2009;18(R2) doi:10.1093/hmg/ddp326.
  • Referans46 Bakula D, Scheibye-Knudsen M. MitophAging: Mitophagy in Aging and Disease. Frontiers in Cell and Developmental Biology [Internet]. 2020;8 doi:10.3389/fcell.2020.00239.
  • Referans47 Jin J, Wei X, Zhi X, Wang X, Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacologica Sinica. 2021;42(5):655–64.
  • Referans48 Greene NP, Lee DE, Brown JL, et al. Mitochondrial quality control, promoted by PGC- 1α, is dysregulated by Western diet-induced obesity and partially restored by moderate physical activity in mice. Physiological Reports [Internet]. 2015;3(7) doi:10.14814/phy2.12470.