MEZENKİMAL KÖK HÜCRELERİN FARKLI ÇÖZELTİ VE SICAKLIKLARDA SAKLANMASI

Amaç: Mezenkimal Kök Hücreler (MKH) kendi kendini yenileme ve çeşitli hücre tiplerine farklılaşma yeteneğine sahiptir. Rejeneratif tıpta kullanımları günümüzde yaygın hale gelmiştir. Bununla birlikte, başarılı bir klinik uygulama için, MKH’lerin canlılığının ve potentliğinin transplantasyon öncesi hazırlık ve nakliye sırasında korunması gerekmektedir. Bu çalışmanın amacı; yeterince araştırılmamış olan bu konuda klinik olarak amaçlanan MKH etkinliğini korumak için önemli olan saklama koşulları ile ilgili literatüre katkı sağlamaktır. Gereç ve Yöntem: 4°C’de ve oda sıcaklığında (24°C), Phosphate Buffered Saline (PBS) ve Serum Fizyolojik(SF) solüsyonunda kısa süreli in vitro depolamada MKH’lerin canlılığı ve CD73, CD90, CD105, CD19 yüzey antijenleri değerlendirildi. Sonuç: 4°C ve 24°C’de PBS ve SF solüsyonunda canlılık oranları ve yüzey antijenleri açısından sonuçlar benzer olsa da, PBS’te ve 4°C’de daha yüksek oranlar elde edilmiştir. Farklı ortam şartlarında MKH’lerin farklılaşma, yaşlanma ve çoğalma kapasiteleri analiz edilerek ileri araştırmalar yapılabilir.

STORAGE OF MESENCHYMAL STEM CELLS IN DIFFERENT SOLUTIONS AND TEMPERATURES

Objective: Mesenchymal Stem Cells (MSCs) have the ability to self-renew and differentiate into various cell types. Their use in regenerative medicine is widespread today. However, for successful clinical application, the viability and potency of MSCs must be maintained during pretransplant preparation and transportation. The aim of this study (an area which has not been adequately researched), is to contribute to the literature on storage conditions, which is important for maintaining the effectiveness of MSCs. Material and Method: The viability of MSCs and CD73, CD90, CD105, CD19 surface antigens were evaluated in short-term in vitro storage in Phosphate Buffered Saline (PBS) and Serum Physiological solution at 4°C and room temperature (24°C). Conclusion: Although MSCs are similar in terms of viability and surface antigens in PBS and SF solution at 4°C and 24°C, higher results were obtained in cells kept in PBS at 4°C. Further research can be conducted by analyzing the differentiation, aging and proliferation capacities of MSCs under different environmental conditions.

___

  • 1. Shen T, Xia L, Dong W, Wang J, Su F, Niu S, Fang Y. A systematic review and meta-analysis: safety and efficacy of mesenchymal stem cells therapy for heart failure. Curr Stem Cell Res Ther 2021; 16(3):354-65.
  • 2. Lavorato A, Raimondo S, Boido M, Muratori L, Durante G, Cofano F, Garbossa D. Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review. Int J Mol Sci 2021; 22(2):572.
  • 3. Gentile P, Garcovich S. Systematic review: adipose-derived mesenchymal stem cells, platelet-rich plasma and biomaterials as new regenerative strategies in chronic skin wounds and soft tissue defects. Int J Mol Sci 2021; 22(4):1538.
  • 4. Wang LT, Liu KJ, Sytwu HK, Yen ML, Yen BL. Advances in mesenchymal stem cell therapy for immune and inflammatory diseases: Use of cell‐free products and human pluripotent stem cell‐derived mesenchymal stem cells. Stem Cells Transl Med 2021; 10(9):1288-1303.
  • 5. Wang YH, Tao YC, Wu DB, Wang ML, Tang H, Chen EQ. Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo. Stem Cell Res Ther 2021; 12(1):1-11.
  • 6. Çiçek G, Duman S, Aktan TMJE. Mesenchymal Stem Cell Signaling Pathway and Interaction Factors. Experimed 2020; 9(3): 120-9.
  • 7. Jung Y, Bauer G, Nolta JA. Concise review: induced pluripotent stem cell‐derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012; 30(1):42-7.
  • 8. Çiçek G, Ozen EU, Bagcı FO, Duman S, Aktan TM, Gundeslioglu AO, et al. Examination of Adipose Tissue-derived Mesenchymal Stem Cell Surface Markers in a Hypoxic Environment. Cell Tissue Biology Journal 2020; 14(5):325-31.
  • 9. Ścieżyńska A, Soszyńska M, Szpak P, Krześniak N, Malejczyk J, Kalaszczyńska I. Influence of Hypothermic Storage Fluids on Mesenchymal Stem Cell Stability: A Comprehensive Review and Personal Experience. Cells 2021; 10(5):1043.
  • 10. Hoang VT, Trinh QM, Phuong DTM, Bui HTH, Ngan NTH, Anh NTT, Hoang DM. Standardized xeno-and serum-free culture platform enables large-scale expansion of high-quality mesenchymal stem/ stromal cells from perinatal and adult tissue sources. Cytotherapy 2021; 23(1):88-99.
  • 11. Cui LL, Kinnunen T, Boltze J, Nystedt, J, Jolkkonen J. Clumping and viability of bone marrow derived mesenchymal stromal cells under different preparation procedures: a flow cytometry-based in vitro study. Stem Cells Int 2016; 1764938. doi.org/10.1155/2016/1764938.
  • 12. Chen Y, Yu B, Xue G, Zhao J, Li R-K, Liu Z et al. Effects of storage solutions on the viability of human umbilical cord mesenchymal stem cells for transplantation. Cell Transplant 2013; 22(6):1075-86.
  • 13. Gálvez-Martín P, Hmadcha A, Soria B, Calpena-Campmany AC, Clares-Naveros B. Study of the stability of packaging and storage conditions of human mesenchymal stem cell for intra-arterial clinical application in patient with critical limb ischemia. Eur J Pharm Biopharm 2014; 86(3):459-68.
  • 14. Muraki K, Hirose M, Kotobuki N, Kato Y, Machida H, Takakura Y, et al. Technical report: Assessment of viability and osteogenic ability of human mesenchymal stem cells after being stored in suspension for clinical transplantation. Tissue Eng 2006; 12(6):1711-9.