Kumlamanın Polietereterketon ve Rezin Siman Bağlantı Dayanımına Etkisi

Amaç: Bu çalışmanın amacı, altyapı materyali olarak kullanılması önerilen polietereterketon materyalinin rezin simanla bağlantısında kumlamanın etkisinin araştırılmasıdır.Gereç ve Yöntem: Bu çalışma için 10x8x2 mm boyutlarında 24 adet polietereterketon örnek, 5 eksenli freze cihazında hazır bloklardan kesilerek elde edildi. Örnekler, otopolimerizan akrilik rezine gömüldü. Örneklerin yüzeyleri silisyum karbit su zımparası ile düzeltildikten sonra rastgele 3 deney grubuna ayrıldı (n=8). Grup 1: 50 µm alüminyum oksit partikülleri ile kumlandı; Grup 2: 110 µm alüminyum oksit partikülleri ile kumlandı; Grup 3: Kontrol grubu, herhangi bir yüzey işlemi uygulanmadı. Daha sonra her örnek ultrasonik temizleyicide distile su ile 1 dakika boyunca yıkandı. Tüm gruplara adeziv uygulandıktan sonra 3 mm çapında silindir şeklinde kalıplar kullanılarak polietereterketon örneklerin yüzeyine rezin siman uygulandı. Elde edilen örneklere üniversal test cihazında, 1mm/dakika hız ile bağlantıda başarısızlık oluşana kadar kuvvet uygulandı. Elde edilen kırılma değeri Newton cinsinden kaydedildi ve bağlanma dayanımı değerleri hesaplandı. Elde edilen veriler Tek Yönlü Varyans Analizi kullanılarak değerlendirildi. Gruplar arasındaki farklılıklar Tukey testi ile belirlendi. Sonuçlar α≤0,05 için anlamlı kabul edildi.Bulgular: Uygulanan yüzey işlemleri arasında istatistiksel olarak anlamlı fark görüldü (p<0,05). En düşük bağlanma dayanımı değerleri kontrol grubunda gözlenirken, kumlama grupları arasında istatistik olarak anlamlı bir fark görülmedi (p>0,05).Sonuç: Polietereterketon materyalinin simantasyonunda adeziv uygulamasına ek olarak kumlamanın bağlantıyı güçlendirdiği ve kumlama işleminde kullanılan kumun partikül boyutunun önemli olmadığı sonucuna varılmıştır. 

Effect of Sandblasting on Bond Strength of Resin Cement to Polyetheretherketone

Background: The aim of this study is to evaluate the effect of sandblasting on the shear bond strength between polyetheretherketone material, which is recommended to be used as framework material, and resin cement.Materials and Methods: For this study, 24 polyetheretherketone specimens of 10x8x2 mm dimensions were prepared by cutting from pre-pressed blocks on a 5-axis milling device. Specimens were embedded into autopolymerized acrylic resin. After the surfaces of the specimens were smoothened with silicon carbide papers, they were randomly divided into 3 experimental groups (n = 8). Group 1 was sandblasted with 50 µm aluminum oxide particles; Group 2 was sandblasted with 110 µm aluminum oxide particles, and in group 3, which was the control group, no surface treatment was applied. Then, each specimen was cleaned with ultrasonic cleaner with distilled water for 1 minute. An adhesive was used for surface conditioning to all specimens and resin cement was applied to the surface of polyetheretherketone specimens using 3 mm diameter cylindrical molds. For the obtained specimens, force was applied in the universal test device until the failure observed with a speed of 1mm / min occurred. The resulting fracture value was recorded in Newtons and the bond strength values were calculated. The data were evaluated by using One Way Variance Analysis. The differences between the groups were determined by the Tukey test. The results were considered significant for α≤0.05.Results: There was a statistically significant difference between the surface treatments applied (p <0.05). While the lowest bond strength values were observed in the control group, there was no statistically significant difference between the sandblasting groups (p> 0.05).Conclusion: While cementing polyetheretherketone crowns, sandblasting is offered before adhesive application. According to this study, the particle size is not important for the shear bond strength between the resin cement and polyetheretherketone.

___

  • Alt, V., Hannig, M., Wöstmann, B., & Balkenhol, M. (2011). Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dental materials, 27(4), 339-347.
  • Bayer, S., Komor, N., Kramer, A., Albrecht, D., Mericske‐Stern, R., & Enkling, N. (2012). Retention force of plastic clips on implant bars: a randomized controlled trial. Clinical oral implants research, 23(12), 1377-1384.
  • Behr, M., Rosentritt, M., Gröger, G., & Handel, G. (2003). Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. Journal of dentistry, 31(1), 33-42.
  • Behr, M., Proff, P., Kolbeck, C., Langrieger, S., Kunze, J., Handel, G., & Rosentritt, M. (2011). The bond strength of the resin-to-zirconia interface using different bonding concepts. Journal of the mechanical behavior of biomedical materials, 4(1), 2-8.
  • Gomes, A. L., Castillo-Oyagüe, R., Lynch, C. D., Montero, J., & Albaladejo, A. (2013). Influence of sandblasting granulometry and resin cement composition on microtensile bond strength to zirconia ceramic for dental prosthetic frameworks. Journal of dentistry, 41(1), 31-41.
  • Hallmann, L., Mehl, A., Sereno, N., & Hämmerle, C. H. (2012). The improvement of adhesive properties of PEEK through different pre-treatments. Applied Surface Science, 258(18), 7213-7218.
  • Kern, M., & Thompson, V. P. (1994). Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. The Journal of prosthetic dentistry, 71(5), 453-461.
  • Kern, M., & Lehmann, F. (2012). Influence of surface conditioning on bonding to polyetheretherketon (PEEK). Dental Materials, 28(12), 1280-1283.
  • Keul, C., Liebermann, A., Schmidlin, P. R., Roos, M., Sener, B., & Stawarczyk, B. (2014). Influence of PEEK surface modification on surface properties and bond strength to veneering resin composites. J Adhes Dent, 16(4), 383-92.
  • Kurtz, S. M., & Devine, J. N. (2007). PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 28(32), 4845-4869.
  • Najeeb, S., Zafar, M. S., Khurshid, Z., & Siddiqui, F. (2016). Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. Journal of prosthodontic research, 60(1), 12-19.
  • Noiset, O., Schneider, Y. J., & Marchand-Brynaert, J. (2000). Adhesion and growth of CaCo2 cells on surface-modified PEEK substrata. Journal of Biomaterials Science, Polymer Edition, 11(7), 767-786.
  • Ohl, A., Schro, K., Keller, D., Meyer-Plath, A., Bienert, H., Husen, B., & Rune, G. M. (1999). Chemical micropatterning of polymeric cell culture substrates using low-pressure hydrogen gas discharge plasmas. Journal of Materials Science: Materials in Medicine, 10(12), 747-754.
  • Ourahmoune, R., Salvia, M., Mathia, T. G., & Mesrati, N. (2014). Surface morphology and wettability of sandblasted PEEK and its composites. Scanning: The Journal of Scanning Microscopies, 36(1), 64-75.
  • Rocha, R. F. V., Anami, L. C., Campos, T. M. B., Melo, R. M. D., Souza, R. O. D. A., & Bottino, M. A. (2016). Bonding of the polymer polyetheretherketone (PEEK) to human dentin: effect of surface treatments. Brazilian dental journal, 27(6), 693-699.
  • Rosentritt, M., Preis, V., Behr, M., Sereno, N., & Kolbeck, C. (2015). Shear bond strength between veneering composite and PEEK after different surface modifications. Clinical oral investigations, 19(3), 739-744.
  • Santing, H. J., Meijer, H. J., Raghoebar, G. M., & Özcan, M. (2012). Fracture strength and failure mode of maxillary implant‐supported provisional single crowns: a comparison of composite resin crowns fabricated directly over PEEK abutments and solid titanium abutments. Clinical implant dentistry and related research, 14(6), 882-889.
  • Schmidlin, P. R., Stawarczyk, B., Wieland, M., Attin, T., Hämmerle, C. H., & Fischer, J. (2010). Effect of different surface pre-treatments and luting materials on shear bond strength to PEEK. dental materials, 26(6), 553-559.
  • Schwitalla, A. D., Bötel, F., Zimmermann, T., Sütel, M., & Müller, W. D. (2017). The impact of argon/oxygen low-pressure plasma on shear bond strength between a veneering composite and different PEEK materials. Dental Materials, 33(9), 990-994.
  • Silthampitag, P., Chaijareenont, P., Tattakorn, K., Banjongprasert, C., Takahashi, H., & Arksornnukit, M. (2016). Effect of surface pretreatments on resin composite bonding to PEEK. Dental materials journal, 35(4), 668-674.
  • Sproesser, O., Schmidlin, P. R., Uhrenbacher, J., Roos, M., Gernet, W., & Stawarczyk, B. (2014). Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements. Journal of Adhesive Dentistry, 16(5).
  • Stawarczyk, B., Özcan, M., Trottmann, A., Schmutz, F., Roos, M., & Hämmerle, C. (2013a). Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. The Journal of prosthetic dentistry, 109(5), 325-332.
  • Stawarczyk, B., Beuer, F., Wimmer, T., Jahn, D., Sener, B., Roos, M., & Schmidlin, P. R. (2013b). Polyetheretherketone—a suitable material for fixed dental prostheses?. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101(7), 1209-1216.
  • Stawarczyk, B., Keul, C., Beuer, F., Roos, M., & Schmidlin, P. R. (2013c). Tensile bond strength of veneering resins to PEEK: impact of different adhesives. Dental materials journal, 32(3), 441-448.
  • Stawarczyk, B., Jordan, P., Schmidlin, P. R., Roos, M., Eichberger, M., Gernet, W., & Keul, C. (2014a). PEEK surface treatment effects on tensile bond strength to veneering resins. The Journal of prosthetic dentistry, 112(5), 1278-1288.
  • Stawarczyk, B., Bähr, N., Beuer, F., Wimmer, T., Eichberger, M., Gernet, W., ... & Schmidlin, P. R. (2014b). Influence of plasma pretreatment on shear bond strength of self-adhesive resin cements to polyetheretherketone. Clinical oral investigations, 18(1), 163-170.
  • Stawarczyk, B., Eichberger, M., Uhrenbacher, J., Wimmer, T., Edelhoff, D., & Schmidlin, P. R. (2015). Three-unit reinforced polyetheretherketone composite FDPs: influence of fabrication method on load-bearing capacity and failure types. Dental materials journal, 34(1), 7-12.
  • Tannous, F., Steiner, M., Shahin, R., & Kern, M. (2012). Retentive forces and fatigue resistance of thermoplastic resin clasps. Dental materials, 28(3), 273-278.
  • Tetelman, E. D., & Babbush, C. A. (2008). A new transitional abutment for immediate aesthetics and function. Implant dentistry, 17(1), 51-58.
  • Toth, J. M., Wang, M., Estes, B. T., Scifert, J. L., Seim III, H. B., & Turner, A. S. (2006). Polyetheretherketone as a biomaterial for spinal applications. Biomaterials, 27(3), 324-334.
  • Uhrenbacher, J., Schmidlin, P. R., Keul, C., Eichberger, M., Roos, M., Gernet, W., & Stawarczyk, B. (2014). The effect of surface modification on the retention strength of polyetheretherketone crowns adhesively bonded to dentin abutments. The Journal of prosthetic dentistry, 112(6), 1489-1497.
  • Yanıkoğlu N.D., Özdemir H., Yıldırım M.P. & Yılmaz C.B. Kumlama İşleminde Kullanılan Kum Partiküllerinin Büyüklüğü ve Basınç Farklılığının Zirkonyum ve Rezin Siman Bağlanma Dayanımı Üzerine Etkisi. (2017) Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergis,i 27(1),107-117.