Soğuk Plazma Teknolojisinin Süt ve Süt Ürünlerinin Bazı Özellikleri Üzerine Etkileri

Bu derleme, termal olmayan bir işleme tekniği olan soğuk plazma tekniklerini ve bunun bazı süt ürünlerinin mikrobiyolojik ve kimyasal özellikleri ile duyusal özellikleri üzerindeki etkilerini kapsamaktadır. Çalışmada öncelikle soğuk plazma üretmek için kullanılan tekniklerden ve soğuk plazma türlerinden ve etki biçimlerinden bahsedilmiştir. Şimdiye kadar gerçekleştirilen çalışmalardan elde edilen sınırlı sonuçlar, soğuk plazma tekniklerinin, tekniğin türüne ve uygulama süresine bağlı olarak Escherichia coli, Staphylococcus aureus, Listeria onocytogenes gibi süt teknolojisi için oldukça önemli olan bazı patojenlerin sayısını azaltabildiğini göstermiştir. Ancak soğuk plazma uygulamasının fiziksel, kimyasal ve duyusal özellikler üzerindeki etkisi halen tartışmalıdır. Soğuk plazma tekniklerinin süt ürünlerinin kalitesi üzerindeki etkinliğinin kapsamını ortaya koyabilmek için daha fazla araştırma yapılması gerekmektedir.

Cold Plasma Technology and Its Effects on Some Properties of Milk and Dairy Products

This review covers cold plasma techniques as a non-thermal processing technique and their effects on the microbiological and chemical properties of some dairy products, as well as sensory properties. Beforehand, the techniques used to generate cold plasma and its types and mode of action were also mentioned to make the reader become familiar with the subject. So far, limited results have shown that cold plasma techniques are able to reduce the number of some pathogens important to dairy technology such as Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, etc., depending on the type of technique and application time. However, the effect of cold plasma application on physical, chemical, and sensory properties is still controversial. More research needs to be conducted to reveal the extent of the effectiveness of cold plasma techniques on the quality of dairy products.

___

  • Attri, P., Kim, Y. H., Park, D. H., Park, J. H., Hong, Y. J., Uhm, H. S., Kim, K. N., Fridman, A., & Choi, E. H. (2015). Generation mechanism of hydroxyl radical species and its lifetime prediction during the plasma-initiated ultraviolet (UV) photolysis. Scientific Reports, 5, 9332. [CrossRef]
  • Bußler, S., Ehlbeck, J., & Schlüter, O. K. (2017). Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innovative Food Science and Emerging Technologies, 40, 78–86. [CrossRef]
  • Chen, D., Peng, P., Zhou, N., Cheng, Y., Min, M., Ma, Y., Mao, Q., Chen, P., Chen, C., & Ruan, R. (2019). Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 290, 270–276. [CrossRef]
  • Corradini, M. G. (2020). Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. In D. Bermudez Aguirre (Ed.), Advances in cold plasma applications for food safety and preservation (pp. 93–108). Academic Press.
  • Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Ranadheera, C. S., Borges, F. O., Mathias, S. P., Fernandes, F. A. N., Rodrigues, S., & Cruz, A. G. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science and Technology, 74, 56–68. [CrossRef]
  • Gavahian, M., Chu, Y. W., Mousavi Khaneghah, A. M., Barba, F. J., & Misra, N. N. (2018). A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science and Technology, 77, 32–41. [CrossRef]
  • Gurol, C., Ekinci, F. Y., Aslan, N., & Korachi, M. (2012). Low temperature plasma for decontamination of E. coli in milk. International Journal of Food Microbiology, 157(1), 1–5. [CrossRef]
  • Khani, M. R., Shokri, B., & Khajeh, K. (2017). Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation. Journal of Food Engineering, 197, 107–112. [CrossRef]
  • Kim, H. J., Yong, H. I., Park, S., Kim, K., Choe, W., & Jo, C. (2015). Microbial safety and quality attributes of milk following treatment with atmospheric pressure encapsulated dielectric barrier discharge plasma. Food Control, 47, 451–456. [CrossRef]
  • Korachi, M., Ozen, F., Aslan, N., Vannini, L., Guerzoni, M. E., Gottardi, D., & Ekinci, F. Y. (2015). Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. International Dairy Journal, 42, 64–69. [CrossRef]
  • Lee, H. J., Jung, S., Jung, H., Park, S., Choe, W., Ham, J. S., & Jo, C. (2012). Evaluation of a dielectric barrier discharge plasma system for inactivating pathogens on cheese slices. Journal of Animal Science and Technology, 54(3), 191–198. [CrossRef]
  • Lee, S. H. I., Fröhling, A., Schlüter, O., Corassin, C. H., De Martinis, E. C. P., Alves, V. F., Pimentel, T. C., & Oliveira, C. A. F. (2021). Cold atmospheric pressure plasma inactivation of dairy associated planktonic cells of Listeria monocytogenes and Staphylococcus aureus. LWT, 146, Article 111452. [CrossRef]
  • Misra, N. N., & Jo, C. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science and Technology, 64, 74–86. [CrossRef]
  • Misra, N. N., Pankaj, S. K., Segat, A., & Ishikawa, K. (2016a). Cold plasma interactions with enzymes in foods and model systems. Trends in Food Science and Technology, 55, 39–47. [CrossRef]
  • Misra, N. N., Schlüter, O., & Cullen, P. J. (2016b). Plasma in food and agriculture. In N. N. Misra, O. Schlüter, & P. J. Cullen (Eds.), Cold plasma in food and agriculture (pp. 1–16). Academic Press.
  • Misra, N. N., Yepez, X., Xu, L., & Keener, K. (2019). In-package cold plasma technologies. Journal of Food Engineering, 244, 21–31. [CrossRef]
  • Pankaj, S. K., Shi, H., & Keener, K. M. (2018). A review of novel physical and chemical decontamination technologies for aflatoxin in food. Trends in Food Science and Technology, 71, 73–83. [CrossRef]
  • Pedrow, P., Hua, Z., Xie, S., & Zhu, M. J. (2020). Engineering principles of cold plasma. In D. Bermudez-Aguirre (Ed.), Advances in cold plasma applications for food safety and preservation (pp. 3–48). Academic Press.
  • Phan, K. T. K., Phan, H. T., Brennan, C. S., & Phimolsiripol, Y. (2017). Nonthermal plasma for pesticide and microbial elimination on fruits and vegetables: An overview. International Journal of Food Science and Technology, 52(10), 2127–2137. [CrossRef]
  • Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M. P., & Marchesseau, S. (2019). Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Frontiers in Nutrition, 5, 1–18. [CrossRef]
  • Rathod, N. B., Kahar, S. P., Ranveer, R. C., & Annapure, U. S. (2021). Cold plasma an emerging nonthermal technology for milk and milk products: A review. International Journal of Dairy Technology, 74(4), 615–626. [CrossRef]
  • Ribeiro, K. C. S., Coutinho, N. M., Silveira, M. R., Rocha, R. S., Arruda, H. S., Pastore, G. M., Neto, R. P. C., Tavares, M. I. B., Pimentel, T. C., Silva, P. H. F., Freitas, M. Q., Esmerino, E. A., Silva, M. C., Duarte, M. C. K. H., & Cruz, A. G. (2021). Impact of cold plasma on the techno-functional and sensory properties of whey dairy beverage added with xylooligosaccharide. Food Research International, 142, 110232. [CrossRef]
  • Rodacka, A., Gerszon, J., Puchala, M., & Bartosz, G. (2016). Radiation-induced inactivation of enzymes – Molecular mechanism based on inactivation of dehydrogenases. Radiation Physics and Chemistry, 128, 112–117. [CrossRef]
  • Sarangapani, C., Ryan Keogh, D. R., Dunne, J., Bourke, P., & Cullen, P. J. (2017). Characterization of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324–333. [CrossRef]
  • Segat, A., Misra, N. N., Cullen, P. J., & Innocente, N. (2016). Effect of atmospheric pressure cold plasma (ACP)on activity and structure of alkaline phosphatase. Food and Bioproducts Processing, 98, 181–188. [CrossRef]
  • Sharma, S., & Singh, R. K. (2020). Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science and Technology, 102, 30–36. [CrossRef]
  • Silveira, M. R., Coutinho, N. M., Esmerino, E. A., Moraes, J., Fernandes, L. M., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S. L., Senaka Ranadheera, C., Borges, F. O., Neto, R. P. C., Tavares, M. I. B., Fernandes, F. A. N., Fonteles, T. V., Nazzaro, F., Rodrigues, S., & Cruz, A. G. (2019). Guava-flavored whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chemistry, 279, 120–127. [CrossRef]
  • Surowsky, B., Schlüter, O., & Knorr, D. (2015). Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: A review. Food Engineering Reviews, 7(2), 82–108. [CrossRef]
  • Thirumdas, R., & Annapure, U. S. (2020). Enzyme inactivation in model systems and food matrixes by cold plasma. In D. Bermudez-Aguirre (Ed.), Advances in cold plasma applications for food safety and preservation (pp. 229–252). Academic Press.
  • Thirumdas, R., Sarangapani, C., & Annapure, U. S. (2015). Cold plasma: A novel non-thermal technology for food processing. Food Biophysics, 10(1), 1–11. [CrossRef]
  • Timmons, C., Pai, K., Jacob, J., Zhang, G., & Ma, L. M. (2018). Inactivation of Salmonella enterica, Shiga toxin-producing Escherichia coli, and Listeria monocytogenes by a novel surface discharge cold plasma design. Food Control, 84, 455–462. [CrossRef]
  • Wan, Z., Pankaj, S. K., Mosher, C., & Keener, K. M. (2019). Effect of high voltage atmospheric cold plasma on inactivation of Listeria innocua on Queso Fresco cheese, cheese model and tryptic soy agar. LWT, 102, 268–275. [CrossRef]
  • Yong, H. I., Kim, H. J., Park, S., Kim, K., Choe, W., Yoo, S. J., & Jo, C. (2015). Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma. Food Research International, 69, 57–63. [CrossRef]