Yüzey Suyu Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi

Bu çalışmada Karabük Üniversitesi yerleşkesi içerisinde akarsu kaynağı (araç çayı) kenarına kurulan 28m2 alana sahip bir deney odasının ısıtma sezonunda yüzey suyu kaynaklı ısı pompası (YSKIP) ile ısıtılması esnasındaki enerji ve ekserji analizleri yapılmıştır. Kompresör devrini değiştirmek için frekans invertörü kullanılan sistemde deney 35 Hz. değerinde, kış şartlarında yapılmış ve iç ortam sıcaklığı 25ۥ°C ulaştığında tamamlanmıştır. Sistemin COP değeri, ortalama 2.58 hesap edilirken, yapılan ekserji analizleri sonucuna göre en yüksek ekserji yıkımı kompresörde 0.6 kW olarak tespit edilmiştir. Diğer ekipmanların ortalama ekserji yıkımları ise, kondenser için 0.125kW, genleşme valfi için 0.152 kW, evaparatör ve fancoil sistemi için 0.14 kW, su kaynağı ısı değiştiricisi için ise 0.06 kW olarak tespit edilirken. Ekserji verimleri, kompresör için %60, kondenser için %75, genleşme valfi için %85, evaparatör için %25, fancoil sistemi için %63 ve su kaynağı ısı değiştiricisi için % 8’dir. Yapılan çalışma neticesinde, yüzey suyu kaynaklı ısı pompası sisteminin Karabük ili şartlarında başarılı bir şekilde çalıştığı tespit edilmiştir.

Energy and Exergy Analysis of Surface Water Source Heat Pump System

In this study, energy and exergy analyzes were carried out to heat an experimental room with 28 square meter area by a surface water source heat pump (SWSHP) in the heating season, where placed in next to a river source (Araç stream) in Karabük University. The system had a frequency inverter to change the compressor speed and the experiment was started at 35 Hz. in winter condition and completed when the indoor temperature reached 25ۥ°C. While the COP value of the system was calculated as 2.58 on average, the highest exergy destruction was determined as 0.6 kW in the compressor in terms of the exergy analysis. The average exergy destructions were determined as 0.125 kW for the condenser, 0.152 kW for the expansion valve, 0.14 kW for the evaporator and fan coil system, and 0.06 kW for the water source heat exchanger. Exergy efficiencies were 60% for the compressor, 75% for the condenser, 85% for the expansion valve, 25% for the evaporator, 63% for the fan coil system and 8% for the water source heat exchanger. As a result of the study, it has been determined that the surface water source heat pump system works successfully in Karabük province conditions.

___

  • [1] Zhang, J., Zhang, H. H., He, Y. L., & Tao, W. Q., “A comprehensive review on advances and applications of industrial heat pumps based on the practices in China”, Applied Energy, 178: 800-825, (2016).
  • [2] Marina, A., Spoelstra, S., Zondag, H. A., & Wemmers, A. K. “An estimation of the European industrial heat pump market potential”, Renewable and Sustainable Energy Reviews, 139: 110545., (2021).
  • [3] Devecioğlu, A. G., & Oruç, V.., “Energetic performance analysis of R466A as an alternative to R410A in VRF systems”. Engineering Science and Technology, an International Journal, 23(6): 1425-1433, (2020).
  • [4] Tzivanidis, C., Bellos, E., Mitsopoulos, G., Antonopoulos, K. A., & Delis, A., “Energetic and financial evaluation of a solar assisted heat pump heating system with other usual heating systems in Athens”, Applied Thermal Engineering, 106: 87-97, (2016).
  • [5] Chae, K. J., & Ren, X., “Flexible and stable heat energy recovery from municipal wastewater treatment plants using a fixed-inverter hybrid heat pump system”, Applied Energy, 179: 565-574, (2016).
  • [6] Zhao, Z., Xing, Z., Hou, F., Tian, Y., & Jiang, S. “Theoretical and experimental investigation of a novel high temperature heat pump system for recovering heat from refrigeration system” Applied Thermal Engineering, 107: 758-767, (2016).
  • [7] Attia, A. A. “Heat pump seawater distillation system using passive vacuum generation system”, Desalination, 397: 151-156, (2016).
  • [8] Akbulut, U., Utlu, Z., & Kincay, O., “Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system”, Energy, 107: 502-522, (2016).
  • [9] Ceylan, İ., Ergün, A., Acar, B., & Aydin, M. “Psychometric and thermodynamic analysis of new ground source evaporative cooling system”, Energy and Buildings, 119, 20-27: (2016).
  • [10] Kılınç, F., Buyruk, E., & caner, M., “Sivas İli Şartlarında Yatay Toprak Kaynaklı Isı Pompasının Isıtma ve Soğutma İçin Performans Analizi”, Politeknik Dergisi, 22(4): 1039-1044, (2019).
  • [11] Zhu, N., Hu, P., Wang, W., Yu, J., & Lei, F., “Performance analysis of ground water-source heat pump system with improved control strategies for building retrofit”, Renewable energy, 80: 324-330, (2015).
  • [12] Cho, I. Y., Seo, H., Kim, D., & Kim, Y., “Performance comparison between R410A and R32 multi-heat pumps with a sub-cooler vapor injection in the heating and cooling modes”, Energy, 112: 179-187, (2016).
  • [13] Zhang, Y., Akkurt, N., Yuan, J., Xiao, Z., Wang, Q., & Gang, W., “Study on model uncertainty of water source heat pump and impact on decision making”, Energy and Buildings, 216: 109950 , (2020).
  • [14] Jung, Y., Kim, J., Kim, H., Nam, Y., Cho, H., & Lee, “HComprehensive multi-criteria evaluation of water source heat pump systems in terms of building type, water source, and water intake distance”, Energy and Buildings, 236: 110765, (2021).
  • [15] Cardemil, J. M., Schneider, W., Behzad, M., & Starke, A. R., “Thermal analysis of a water source heat pump for space heating using an outdoor pool as a heat source”, Journal of Building Engineering, 33: 101581, (2021).
  • [16] Yan, H., Ding, L., Sheng, B., Dong, X., Zhao, Y., Zhong, Q., ... & Shen, J., “Performance prediction of HFC, HC, HFO and HCFO working fluids for high temperature water source heat pumps”, Applied Thermal Engineering, 185: 116324, (2021).
  • [17] Deng, N., Gao, J., Cai, R., Jing, X., Zhang, Y., Hao, R., & Li, M., “Experimental investigation on matching a conventional water source heat pump with different refrigerants for supplying high temperature water”, Applied Thermal Engineering, 166: 114668, (2020).
  • [18] Lv, Y., Si, P., Rong, X., & Yan, J., “An optimization method for CCHP and river water source heat pump combined system” Energy procedia, 145: 592-597, (2018).
  • [19] Wang, Z., Wang, L., Ma, A., Liang, K., Song, Z., & Feng, L., “Performance evaluation of ground water-source heat pump system with a fresh air pre-conditioner using ground water” Energy Conversion and Management, 188: 250-261, (2019).
  • [20] Özdemir, M. B., & Özkaya, M. G., “Ankara İli Şartlarında Düşey Tip Toprak Kaynaklı Isı Pompası Sisteminin Enerji ve Ekserji Analizi”, Politeknik Dergisi, 18(4): 269-280, (2015).
  • [21] Fuentes, E., Waddicor, D. A., & Salom, J., “Improvements in the characterization of the efficiency degradation of water-to-water heat pumps under cyclic conditions”, Applied Energy, 179: 778-789, (2016).
  • [22] Waddicor, D. A., Fuentes, E., Azar, M., & Salom, J., “Partial load efficiency degradation of a water-to-water heat pump under fixed set-point controll”, Applied Thermal Engineering, 106: 275-285, (2016).
  • [23] Schibuola, L., & Scarpa, M. “Experimental analysis of the performances of a surface water source heat pump” Energy and Buildings, 113: 182-188, (2016).
  • [24] Si, P., Li, A., Rong, X., Feng, Y., Yang, Z., & Gao, Q., “New optimized model for water temperature calculation of river-water source heat pump and its application in simulation of energy consumption”, Renewable Energy, 84, 65-73: (2015).
  • [25] Baik, Y. J., Kim, M., Chang, K. C., Lee, Y. S., & Ra, H. S., “Potential to enhance performance of seawater-source heat pump by series operation”, Renewable Energy, 65, 236-244: (2014).
  • [26] Ceylan, I., Ali, I. H. G., Ergün, A., Gürel, A. E., Acar, B., & Islam, N., “A new hybrid system design for thermal energy storage” Journal of Thermal Science, 29(5): 1300-1308, (2020).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ