Yazdırma Açısının 3B Yazıcıda Üretilen PLA Numunenin Mekanik Özellikleri Üzerine Etkisinin Deneysel ve Sonlu Elemanlar Metodu ile İncelenmesi

Eriyik yığma modelleme, 3B yazıcıların gelişimi ve çeşitlenmesi ile sanayi ve evsel kullanımda tercih edilen önemli bir teknoloji haline gelmiştir. Ancak, 3B yazıcılarda yazdırılan parça dayanımını etkileyen parametre sayısı oldukça fazladır. Bu çalışmada, 3B yazıcı kullanılarak üretilen numunelerde yazdırma açısının mekanik özelliklere etkisi deneysel yöntem ve sonlu elemanlar metodu kullanılarak incelenmiştir. Test numunelerinin yazdırılmasında PLA filament ve farklı yazdırma açıları (0°, 45°, 90°) kullanılmıştır. Sonlu elemanlar analizinde numuneler transvers izotropik malzeme olarak kabul edilmiştir. Malzemenin plastik davranışı Hill akma kriteri ile tanımlanmıştır. Çalışmanın ilk aşamasında, 0°, 45° ve 90° yazdırma açıları için sonlu elamanlar analiz sonuçları ve deneysel sonuçlar karşılaştırılmıştır. Karşılaştırma sonuçları, yazdırılan numunelerin dayanımının belirlenmesinde transvers izotropik malzeme kabulü ve Hill akma kriterinin kullanılabileceğini göstermiştir. Çalışmanın son aşamasında, 15°, 30°, 60°, 75° yazdırma açıları için sonlu elemanlar analizleri tekrarlanmıştır. Sonlu elemanlar analizi ve deneysel sonuçlar, numunelerin mekanik özelliklerinin ve maksimum yük değerlerinin yazdırma açısının artması ile belirgin şekilde yükseldiğini göstermiştir.

Investigation of the Effects of Printing Angle on Mechanical Properties of PLA Specimen Fabricated with 3D Printer by using Experimental and Finite Elements Method

Fused deposition modeling has become an important technology preferred in industrial and domestic use with the development and diversification of 3D printers. However, the number of parameters that affect the strength of the printed part in 3D printers is quite high. In this study, the effect of printing angle on the mechanical properties of the specimens fabricated with 3D printer was investigated through experimental and finite elements method. PLA filament and different printing angles (0°, 45°, 90°) were used for printing the test specimens. Specimens were accepted as transversely isotropic in the finite elements analysis. The plastic behavior of the material was explained by Hill yield criterion. In the first stage of the study, results of finite elements analysis and experimental study for 0°, 45° and 90° printing angles were compared. Comparison results showed that the acceptance of transversely isotropic material and Hill yield criterion can be used to determine the strength of the printed part. In the last stage of the study, finite elements analysis was repeated for 15°, 30° 60°, 75° printing angles. The finite element analysis and experimental results showed that the mechanical properties and maximum load values of specimens increased significantly with increasing of printing angle.

___

  • [1] X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui., "3D printing of polymer matrix composites: A review and prospective", Compos. B. Eng., 110: 442-458, (2017).
  • [2] N. Turner, B., Strong, R. and A. Gold, S., "A review of melt extrusion additive manufacturing processes: I. Process design and modeling", Rapid Prototyp. J., Vol. 20 No.3: 192-204, (2014).
  • [3] Utela, B., Storti, D., Anderson, R., and Ganter, M., "A review of process development steps for new material systems in three dimensional printing (3DP)", J. Manuf. Process, 10(2): 96-104, (2008).
  • [4] Vaezi, M., Seitz, H., and Yang, S. "A review on 3D micro-additive manufacturing technologies, " Int. J. Adv. Manuf. Technol., 67(5-8): 1721-1754, (2013).
  • [5] Parandoush, P., and Lin, D., "A review on additive manufacturing of polymer-fiber composites", Compos. Struct., 182: 36-53, (2017).
  • [6] Redwood, B., Schöffer, F., and Garret, B. "The 3D printing handbook: technologies, design and applications", 3D Hubs, Netherlands, (2017).
  • [7] Chua, C. K., Leong, K. F., and Lim, C. S., "Rapid prototyping: principles and applications (with companion CD-ROM) ", World Scientific Publishing Company, Singapore, (2010).
  • [8] Ziemian, C., Sharma, M., and Ziemian, S. "Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling", Mechanical engineering, IntechOpen, (2012).
  • [9] Zhang, P., Arceneaux, D. J., Liu, Z., Nikaeen, P., Khattab, A., and Li, G. "A crack healable syntactic foam reinforced by 3D printed healing-agent based honeycomb", Compos. B. Eng., 151: 25-34, (2018).
  • [10] T. Li and L. Wang, "Bending behavior of sandwich composite structures with tunable 3D-printed core materials", Compos. Struct., 175: 46–57, (2017).
  • [11] Kao, Y. T., Amin, A. R., Payne, N., Wang, J., and Tai, B. L., "Low-velocity impact response of 3D-printed lattice structure with foam reinforcement", Compos. Struct., 192: 93–100, (2018).
  • [12] Jacobs, P. F., "Rapid prototyping & manufacturing: fundamentals of stereolithography", David T. Reid, Society of Manufacturing Engineers, California, (1992).
  • [13] Masood, S.H., "Intelligent rapid prototyping with fused deposition modelling", Rapid Prototyp. J., 2(1): 24-33, (1996).
  • [14] Yadroitsev, I., Bertrand, P., and Smurov, I., "Parametric analysis of the selective laser melting process", Appl. Surf. Sci., 253(19): 8064-8069, (2007).
  • [15] Agarwala, M., Bourell, D., Beaman, J., Marcus, H., and Barlow, J., "Direct selective laser sinlerin of metals", Rapid Prototyp. J., 1(1): 26–36, (1995). [16] Lee, C. S., Kim, S. G., Kim, H. J., and Ahn, S. H. "Measurement of anisotropic compressive strength of rapid prototyping parts", J. Mater. Process. Technol., 187–188: 627–630, (2007).
  • [17] Rodríguez, J. F., Thomas, J. P., and Renaud, J. E., "Mechanical behavior of acrylonitrile butadiene styrene (ABS) fused deposition materials. Experimental investigation", Rapid Prototyp. J., 7(3): 148–158, (2001).
  • [18] Sood, A. K., Ohdar, R. K., and Mahapatra, S. S., "Parametric appraisal of mechanical property of fused deposition modelling processed parts", Mater. Des., 31(1): 287–295, (2010).
  • [19] Tronvoll, S. A., Welo, T., and Elverum, C. W., "The effects of voids on structural properties of fused deposition modelled parts: A probabilistic approach", Int. J. Adv. Manuf. Technol., 97(9): 3607–3618, (2018).
  • [20] Ahn, S. H., Baek, C., Lee, S., and Ahn, I. S., "Anisotropic tensile failure model of rapid prototyping parts - Fused Deposition Modeling (FDM)", Int. J. Mod. Phys. B., 17(8-9): 1510–1516, (2003).
  • [21] Yao, T., Deng, Z., Zhang, K., and Li, S., "A method to predict the ultimate tensile strength of 3D printing polylactic acid (PLA) materials with different printing orientations", Compos. B. Eng., 163: 393–402, (2019).
  • [22] Casavola, C., Cazzato, A., Moramarco, V., and Pappalettere, C., "Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory", Mater. Des., 90: 453–458, (2016).
  • [23] Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., and Shan, C. "Isotropic and anisotropic elasticity and yielding of 3D printed material", Compos. B. Eng., 99: 506–513, (2016).
  • [24] Xia, Y., Xu, K., Zheng, G., Zou, R., Li, B., and Hu, P., "Investigation on the elasto-plastic constitutive equation of parts fabricated by fused deposition modeling", Rapid Prototyp. J., vol. 25(3): 592–601, (2019).
  • [25] Chacón, J. M., Caminero, M. A., García-Plaza, E., and Núnez, P. J., "Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection", Mater. Des., 124: 143-157, (2017).
  • [26] Domingo-Espin, M., Puigoriol-Forcada, J. M., Garcia-Granada, A. A., Llumà, J., Borros, S., and Reyes, G., "Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts", Mater. Des., 83: 670-677, (2015).
  • [27] Zhao, Y., Chen, Y., and Zhou, Y., "Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses", Mater. Des., 181: 1-10, (2019).
  • [28] Wang, P., Zou, B., Dıng, S., Lı, L., and Huang, C., "Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK", Chinese J. Aeronaut., 34-9: 236-246, (2021).
  • [29] Material Safety Data Sheeet for Flashforge PLA. FlashForge PLA Filament. http://static.creativetools.se/misc/doc/flashforge/filament/FF-PLA-MSDS.pdf. (Erişim Tarihi: 12.02.2021).
  • [30] ASTM D638-14, "Standard Test Method for Tensile Properties of Plastics", (2014).
  • [31] Dave, H. K., and Davim, J. P., "Fused Deposition Modeling Based 3D Printing", Springer, Switzerland, (2021).
  • [32] Rajpurohit, S.R., and Dave, H. K. "Effect of process parameters on tensile strength of FDM printed PLA part", Rapid Prototyp. J., 24-8: 1317–1324, (2018).
  • [33] Rajpurohit, S.R., and Dave, H. K., "Tensile properties of 3D printed PLA under unidirectional and bidirectional raster angle: a comparative study", Int. J. Mater. Eng., 12-1: 6-11. (2018).
  • [34] Rajpurohit, S. R., and Dave, H. K. "Analysis of tensile strength of a fused filament fabricated PLA part using an open-source 3D printer", Int. J. Adv. Manuf. Syst., 101-5: 1525-1536, (2019).
  • [35] Kiendl, J., and Gao, C., "Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup", Compos. B. Eng., 180: 1-6, (2020).
  • [36] Tuttle, M. E., "Structural Analysis of polymeric composite materials–Second edition ", CRC Press, New York, (2013).
  • [37] Christensen, R. M., "The Numbers of Elastic Properties and Failure Parameters for Fiber Composites." J. Eng. Mater. Technol., 120(2): 110–113. (1998).
  • [38] Jones, R. M., "Mechanics of composite materials", CRC Press, Virginia, (1998).
  • [39] Wang, S., Ma, Y., Deng, Z., Zhang, K., and Dai, S., "Implementation of an elastoplastic constitutive model for 3D-printed materials fabricated by stereolithography", Addit. Manuf., 33: 1-8, (2020).
  • [40] Sheth, S., Taylor, R. M., and Adluru, H., "Numerical investigation of stiffness properties of fdm parts as a function of raster orientation", Solid Freeform Fabrication Symposium-An Additive Manufacturing Conference, USA, 1112-1120, (2017).
  • [41] Gordelier, T. J., Thies, P. R., Turner, L., and Johanning, L., "Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review", Rapid Prototyp. J., 25-6: 953–971, (2019).
  • [42] Ahn, S. H., Montero, M., Odell, D., Roundy, S., and Wright, P. K., "Anisotropic material properties of fused deposition modeling ABS", Rapid Prototyp. J. 8-4: 248-257,(2002).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Toz Metalurjisi Yöntemi ile Üretilen Fe Esaslı Kompozit Malzemelerde Vakum Sementasyon İşleminin Sinterlenebilirlik ve Mekanik Özelliklere Etkisinin İncelenmesi

Özer PAMUK, Ümit DEMİR, Sinan AKSÖZ

Parmak Hareketlerine Dayalı Gerçek Zamanlı İnsan-Makine Arayüzleri için Giyilebilir Elektromiyogram Tasarımı

İsmail AYDOĞAN, Eda AKMAN AYDIN

K-En Az Anlamlı Bitlere Dayalı Kaotik Bir Harita Kullanan Renkli Görüntü Steganografisi

Hidayet ÇELİK, Nurettin DOĞAN

Endüstriyel Atıkların Kil Tabanlı Tuğlalarda Kullanımı

Ömer Faruk MURATHAN

NiTi Esaslı Saclara Uygulanan Farklı Çözündürme ve Yaşlandırma Isıl İşlemlerinin Metalografik ve Mekanik Özelliklere Etkileri

Sinan AKSÖZ, Rıdvan ARSLAN, Nimet KARDEŞ SEVER, Bülent BOSTAN

Bulanık Ters Model Kullanılarak Doğru Akım Motor Sürücüsü için Referans Model Temelli Uyarlanabilir Bulanık Denetleyici

Mehmet BULUT

Manyetoreolojik Amortisör Prototipinin Deneysel Çalışması ve Eşdeğer Sönüm Katsayılarının Elde Edilmesi

Turgay ERGİN, Duran ALTIPARMAK

Bilgisayarlı Görü Tabanlı Yol Kaplaması Tehlikeleri Tespiti için Faster R-CNN Yapısı

Furkan BALCI, Safiye YILMAZ

Bağlantısız Paralel Parti Üretimi Yapan Makine Çizelgeleme Probleminin Karışık-Tamsayılı Programlama ile Çözümü

Merve BAKIR, Aslı SEBATLI SAĞLAM, Fatih ÇAVDUR

Küçük Bir Girdaplı Yakıcı ve Fırında CO2 Seyreltmesinin Alev Stabilizasyonu ve NOX Emisyonu Üzerindeki Etkileri

Mustafa İLBAŞ, Göktürk CANDAN