Study of simultaneously developing flow and temperature field in rectangular ducts with constant wall temperature

Bu çalışmada dikdörtgen kanalların girişinde hidrodinamik ve termal yönden gelişmekte olan akışın akış ve ısı transferi karakteristikleri teorik olarak incelenmiştir. Hız bileşenlerinin hesaplanmasında parabolik momentum denklemleri kullanılmıştır. Sıcaklık dağılımın belirlenmesinde ise enerji denkleminin parabolik biçimi kullanılmıştır. Basınç dağılımı, süreklilik ve momentum denklemlerinden elde edilen Poission denklemi yardımı ile belirlenmiştir. Sonlu fark denklemlerinin sayısal çözümlemelerinde Newton-Raphson metodu kullanılmıştır. Sayısal sonuçlar Reynold sayısının 250 $\leq $ Re $\leq $ 2250 aralığında 1/3, 2/3 ve 3/3 kenar oranları için verilmiştir. Analizin doğruluğu literatürden elde edilen tam gelişmiş akışın Nusselt sayıları ile kıyaslanarak sağlanmıştır.

Dikdörtgen kesitli kanallarda sabit duvar sıcaklığında eşzamanlı gelişen akışın ısı transferinin incelenmesi

In this research, the heat transfer and flow friction characteristics of hydrodynamically and thermally developing flows at the entrance of rectangular ducts have been theoretically studied. In calculating components of velocity, parabolic momentum equations'were used. Temperature field was also determined using parabolic form of energy equation. Besides, pressure distribution was calculated by means of a Poisson equation, which is obtained from combination of momentum and continuity equations. In numerical solution of finite difference equations, Newton-Raphson method was used. Numerical results were presented for channels with 1/3, 2/3 and 3/3 aspect ratio and range of Reynolds number 250 $\leq $ Re $\leq $ 2250. Accuracy of the analysis was confirmed by comparing the fully developed Nusselt numbers obtained in this study with the literature.

___

  • 1.Nguyen ,V. T., and Maclaine-cross, I, I., Simultaneously Developing, Laminar Flow, Forced Convection in the Entrance Region of Parallel Plates, Journal of Heat Transfer, Vol. 113, p. 113-842, November 1991.
  • 2.Schlichting, H., Boundary Layer Theory, McGraw-Hill Publishing Company, New York,1979
  • 3.Cheng, C.H., Weng, C.J., Aung, W., Buoyancy- assisted Flow Reversal and Convective Heat Transfer in Entrance Region of a Vertical Duct, International Journal of Heat and Fluid Flow, Vol. 21, p. 403-411, 2000.
  • 4.Gupta, R.C., On developing laminar non- Newtonian Flow in Pipes and Channels, Nonlinear Analysis, Vol.2, p. 171-193, 2001.
  • 5.Magno, R. N. O., Macedo, E. N., Quaresma, J. N. N., Solution for the Internal Boundary Layer Equations in Simultaneously Developing Flow of Power-law Fluids within Parallel Plates Channels, Chemical Engineering Journal, Vol. 87, p.339-350, 2002.
  • 6.Shyy, W., Advances in Heat Transfer, Vol. 24, p. 191-274, ISBN 0-12-020024-4, Academic Press, 1994.
  • 7.Vradis, G., Zalak, V., Benston, J., Simultaneous Variable Solution of the Incompressible Steady Navier-Stock Equations in General Curvilinear Coordinate Systems., Journal of Fluid Engineering, Vol. 114, p.299- 305, September 1992.
  • 8.Spiga, M., and Morini, G.L., The developing Nuselt Number for Slug Flow in Rectangular Ducts, International Journal of Heat and Mass Transfer, Vol 41, p. 2799-2807, September 1998.
  • 9.Sayed-Ahmed, M.E., Laminar heat transfer for thermally developing flow of a Herschel-Bulkley fluid in a Square Duct, Int. Com. Heat Mass Transfer, Vol.27, p. 1013-1024, 2000.
  • 10.Burden, R.L., and Douglas F. J., Numerical Analysis, PWS-KENT Publishing Company, Boston, 1989.
  • ll.Kincaid, D., and Cheney, W., Numerical Analysis-Mathematics of Scientific Computing,Brooks/Cole Publishing Company, Pacific Grove, California, 1991.
  • 12.Madhav, M.T., and Malin, M.R., The Numerical Simulation of Fully Developed Duct Flows, Appl. Math. Modeling, Vol. 21, p.503-507,August 1997.