Soğuk Metal Transferi ile Birleştirilen AA5754 Alaşımı İnce Sacların Korozyon Davranışı

AA5754 alüminyum alaşımı, otomobillerin iç ve dış panellerinde yaygın olarak kullanılmaktadır. Bu çalışmada, soğuk metal transferi (CMT) ile birleştirilen 2 mm kalınlığındaki AA5754 levhaların, kaynak işlemi sonrası korozyon hızının araştırılması amaçlanmıştır. Kaynak işlemi ER5356 dolgu teli kullanılarak 73.97, 86.18, 108.99 J/mm ısı girdisi değerlerinde gerçekleştirilmiştir. Isı girdisinin korozyon hızına etkisi Tafel ekstrapolasyon yöntemi ile belirlenmiştir. Isı girdisinin artmasıyla korozyon hızının arttığı tespit edilmiştir. Korozyona uğramış yüzeyler taramalı elektron mikroskobu (SEM) ile incelenmiştir.  
Anahtar Kelimeler:

AA5754, CMT kaynağı, korozyon

Corrosion Behavior of AA5754 Thin Sheets Welded with Cold Metal Transfer Method

AA5754 aluminium alloy are widely used in outer and inner panels of automobiles. Present study aimed to investigate the corrosion rate of cold metal transfer (CMT) welded 2 mm thick AA5754 sheets. Welded sheets were produced with 73.97, 86.18, 108.99 J/mm heat input values using ER5356 filler wire. Effect of heat input on corrosion rate was determined by Tafel extrapolation method. It was determined that corrosion rate increased with increasing heat input. Corroded surfaces were viewed by SEM. Hardness test was applied and maximum hardness values were observed in weld metal.

___

  • [1] Simoncini, M., Forcellese, A., “Effect of the welding parameters and tool configuration on micro-and macro-mechanical properties of similar and dissimilar FSWed joints in AA5754 and AZ31 thin sheets”, Materials & Design, 41: 50-60, (2012).
  • [2] Han, L., Thornton, M., Boomer, D., Shergold, M., “A correlation study of mechanical strength of resistance spot welding of AA5754 aluminium alloy”, Journal of Materials Processing Technology, 211(3): 513-521, (2011).
  • [3] Liu, A., Tang, X., Lu, F., “Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding”, Materials & Design, 50: 149-155, (2013).
  • [4] Jin, H., Saimoto, S., Ball, M., Threadgill, P. L., “Characterisation of microstructure and texture in friction stir welded joints of 5754 and 5182 aluminium alloy sheets”, Materials science and technology, 17(12): 1605-1614, (2001).
  • [5] Taşkın, M., Çalıgülü, U., “AISI 430/1010 Çelik Çiftinin Lazer Kaynağında Kaynak Gücünün Birleşmeye Etkisi”, Fırat University Journal of Engineering, 21 (1): 11-22, (2009).
  • [6] Kang, M., Kim, C., “Joining Al 5052 alloy to aluminized steel sheet using cold metal transfer process”, Materials & Design, 81: 95–103, (2015).
  • [7] Grzybicki, M., Jakubowski, J., “Comparative tests of steel car body sheet welds made using CMT and MIG/MAG methods”, Welding International, 27(8): 610–615, (2013).
  • [8] Cao, R., Sun, J. H., Chen, J. H., Wang, P., “Weldability of CMT Joining of AA6061-T6 to Boron Steels with Various Coatings”, Welding Journal, 93: 193–204, (2014).
  • [9] Kah, P., Suoranta, R., Martikainen, J., “Advanced gas metal arc welding processes”, The International Journal of Advanced Manufacturing Technology, 67(1-4): 655–674, (2012).
  • [10] Rajeev, G. P., Kamaraj, M., Bakshi, S. R., “Al-Si-Mn Alloy Coating on Aluminum Substrate Using Cold Metal Transfer (CMT) Welding Technique”, JOM, 66(6): 1061–1067, (2014).
  • [11] Casalino, G., Mortello, M., Leo, P., Benyounis, K. Y., Olabi, A. G., “Study on arc and laser powers in the hybrid welding of AA5754 Al-alloy”, Materials & Design, 61: 191-198, (2014).
  • [12] Barlas, Z., Özsaraç, U., “Effects of FSW Parameters on Joint Properties of AlMg3 Alloy”, Welding Journal, 91: 16-22, (2012).
  • [13] Costa, M. I., Verdera, D., Costa, J. D., Leitao, C., Rodrigues, D. M., “Influence of pin geometry and process parameters on friction stir lap welding of AA5754-H22 thin sheets”, Journal of Materials Processing Technology, 225: 385-392, (2015).
  • [14] Halambek, J., Berković, K., Vorkapić-Furač, J., “Laurus nobilis L. oil as green corrosion inhibitor for aluminium and AA5754 aluminium alloy in 3% NaCl solution”, Materials Chemistry and Physics, 137 (3): 788–795, (2013).
  • [15] Afseth, A., Nordlien, J. H., Scamans, G. M., Nisancioglu, K., “Influence of heat treatment and surface conditioning on filiform corrosion of aluminium alloys AA3005 and AA5754”, Corrosion Science, 43 (12): 2359–2377, (2001).
  • [16] Luijendijk, T., "Welding of dissimilar aluminium alloys", Journal of Materials Processing Technology, 103(1): 29–35, (2000).
  • [17] Maters, G. “The Welding of Aluminium and Its Alloys”, Woodhead Publishing Limited, Cambridge, İngiltere, 2002.
  • [18] Kumar, N. P., Vendan, S. A., & Shanmugam, N. S., "Investigations on the parametric effects of cold metal transfer process on the microstructural aspects in AA6061", Journal of Alloys and Compounds, 658: 255–264, (2016).
  • [19] Abouarkoub, A., Thompson, G. E., Zhou, X., Scamans, G., “Microstructure and Corrosion Properties of the Plasma-MIG Welded AA5754 Automotive Alloy”, Journal of Minerals and Materials Characterization and Engineering, 3: 318-325, (2015).
  • [20] El-Etre, A. Y., “Inhibition of aluminum corrosion using Opuntia extract”, Corrosion Science, 45(11): 2485-2495, (2003)
  • [21] Katsas, S., Nikolaou, J., Papadimitriou, G., “Corrosion resistance of repair welded naval aluminium alloys”, Materials & Design, 28(3): 831-836, (2007).
  • [22] Ghali, E., “Corrosion resistance of aluminum and magnesium alloys: understanding, performance, and testing”, Vol. 12, Revie, R. W., John Wiley & Sons, 2010.
  • [23] Martienssen, W., Warlimont, H., “Springer handbook of condensed matter and materials data”, Springer Science & Business Media, New York, 2006.
  • [24] Vargel, C., “Corrosion of Aluminium”, Elsevier, New York, 2004.