Isı Alıcılarda Elektrosprey ile Mekanik Sprey Atomizasyon Soğutma Performanslarının Karşılaştırılması

Endüstride birçok alanda kullanılmakta olan elektrosprey soğutma alanında son yıllarda keşfedilmeye başlanan bir konudur. Bu çalışmada literatürde hakkında oldukça kısıtlı çalışmalar bulunan elektrosprey soğutma ile mekanik sprey soğutmanın ısı alıcı üzerindeki soğutma performansı irdelenmiştir. Aynı şartlarda elektrosprey ile gerçekleşen ısı transferinin verileri deneyler yapılarak elde edilirken, mekanik sprey soğutma verileri Ansys Fluent CFD programı kullanılarak elde edilmiştir. Yapılan deneysel ve sayısal çalışmanın sonucunda daha küçük partikül çapı ve yüklü damlacıkların elde edildiği elektrosprey soğutmada mekanik sprey soğutmaya göre yaklaşık %15 daha iyi bir ısı transfer performansı gösterdiği belirlenmiştir. Elektrosprey metodunda, mekanik spreye göre 3,2 kW/m2 ısı akısında %13, 2,59 kW/m2 ısı akısında %14, 1,88 kW/m2 ısı akısında ise %17 daha iyi soğutma elde edildiği görülmüştür.

Comparison of Electrospray And Mechanical Spray Atomization Cooling Performances on Heat Sinks

In recent years, it is a topic that has been discovered in the field of electrospray cooling, which is used in many areas in industry. In this study, the cooling performance of electrospray cooling and mechanical spray cooling on the heat sink, about which there are very limited studies in the literature, were examined. In the same conditions, the data of heat transfer with electrospray were obtained by conducting experiments, while the data of mechanical spray cooling were obtained by using Ansys Fluent CFD program. As a result of the experimental and numerical study, it was determined that electrospray cooling, in which smaller particle diameter and charged droplets were obtained, showed a heat transfer performance approximately 15% better than mechanical spray cooling. In the electrospray method, it was observed that 13% better cooling was obtained at 3,2 kW/m2 heat flux, at 2,59 kW/m2 heat flux %14 and better at 1,88 kW/m2 heat flux %17 compared to mechanical spray.

___

  • [1] Karabulut K., “Heat transfer improvement study of electronic component surfaces using air jet impingement”, Journal of Computational Electronics, 18 (4): 1259-1271, (2019).
  • [2] Karabulut K., Alnak D.E., “Study of cooling of the varied designed warmed surfaces with an air jet impingement”, Pamukkale University Journal of Engineering Sciences, 26 (1): 88-98, (2020).
  • [3] Karabulut K., Alnak D.E., Koca F., “Investigation of heat transfer from heated square patterned surfaces in a rectangular channel with an air jet impingement”, European Journal of Engineering and Natural Sciences, 3 (1): 78-86, (2019).
  • [4] Alnak D.E., Karabulut K., “Jet giriş genişliğinin ısı transferi ve akış yapısına olan etkisinin araştırılması”, Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36 (2): 331-345, (2021).
  • [5] Nawani S., Subhash M., “A review on multiple liquid jet impingement onto flat plate”, Materials Today: Proceedings, 46: 11190-11197, (2021).
  • [6] Chen C., Hou F., Ma R., Su M., Li J., Cao L.,”Design, integration and performance analysis of a lid-integral microchannel cooling module for high-power chip”, Applied Thermal Engineering, 117457, (2021).
  • [7] Ma K.M., Chen B.R., Gao J.J., Lin C.Y., “Development of an OAPCP-micropump liquid cooling system in a laptop”, International Communications in Heat and Mass Transfer, 36: 225-232, (2009).
  • [8] Zhao J., Du M., Zhang Z., Ling X., “Thermal management strategy for electronic chips based on combination of a flat-plate heat pipe and spray cooling”, International Journal of Heat and Mass Transfer, 181: 121894, (2021).
  • [9] Cheng W. L., Zhang W. W., Chen H., Hu, L., “Spray cooling and flash evaporation cooling: The current development and application”, Renewable and Sustainable Energy Reviews, 55: 614-628, (2016).
  • [10] Wang H., Mamishev A., “Design methodology for the micronozzle-based electrospray evaporative cooling devices”, Journal of Electronics Cooling and Thermal Control, 2: 17-31, (2012).
  • [11] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).
  • [12] Badıllı U., Tarımcı N., “Elektrosprey püskürtme yöntemi ve nanoteknolojideki uygulamaları”, Ankara Eczacılık Fakültesi Dergisi, 38: 117-135, (2009).
  • [13] Jaworek A., Sobczyk A., Krupa A.,”Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [14] Cloupeau M., Prunet-Foch B., “Electrohydrodynamic spraying functioning modes: a critical review”, Journal of Aerosol Science, 25 (6): 1021–1036, (1994).
  • [15] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30 (7): 873–893, (1999).
  • [16] Kabakuş A., Yakut K., Özakın A.N., Yakut R., “Experimental determination of cooling performance on heat sinks with cone-jet electrospray mode”, Engineering Science and Technology, an International Journal, 24: 665-670, (2021).
  • [17] Zhu, G., Shao, Y., Liu, Y., Pei, T., Li, L., Zhang, D., Guo, G., Wang, X., “Single-cell metabolite analysis by electrospray ionization mass spectrometry”, TrAC Trends in Analytical Chemistry, 143: 116351, (2021).
  • [18] Jaworek, A., Sobczyk, A., Krupa, A., “Electrospray application to powder production and surface coating”, Journal of Aerosol Science, 125: 57-92, (2018).
  • [19] Steipel, R., Gallovic, M., Batty, C., Bachelder, E., Ainslie, K., “Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo”, Materials Science and Engineering: C, 105: 110070, (2019).
  • [20] Si B. Q., Byun D., Lee S., “Experimental and theoretical study of a cone-jet for an electrospray microthruster considering the interference effect in an array of nozzles”, Journal of Aerosol Science, 38: 924-934, (2007).
  • [21] Gibbons M.J., Robinson A.J., “Electrospray array heat transfer”, International Journal of Thermal Sciences, 129: 451-461, (2018).
  • [22] Yakut R., Yakut K., Sabolsky E., Kuhlman J., “Experimental determination of cooling and spray characteristics of the water electrospray”, International Communications in Heat and Mass Transfer, 120: 105046, (2021).
  • [23] Gibbons M.J., Robinson A.J., “Heat transfer characteristics of single cone-jet electrosprays”, International Journal of Heat and Mass Transfer, 113: 70-83, (2017).
  • [24] Wang H., Mamishev A.V., “Heat transfer correlation models for electrospray evaporative cooling chambers of different geometry types”, Applied Thermal Enginnering, 40: 91-101, (2012).
  • [25] Jaworek A., Krupa A., “Classification of the modes of EHD spraying”, Journal of Aerosol Science, 30: 873-893, (1999).
  • [26] Tan F., Canbolat A.S., Türkan B., Yüce B.E., “Elektronik cihazların soğutulmasının farklı türbülans modelleri ve duvar yaklaşımları ile CFD simülasyonu” 12. Ulusal Tesisat Mühendisliği Kongresi, İzmir, Türkiye. (2015).
  • [27]https://www.interlab.com.tr/assets/upload/services/document/920-026-ethanol-absolute64-17-5-en-r-1-pdf23112019075511.pdf. (2021)
  • [28] Kline S.J., McClintock F.A., “Describing uncertainties in single-sample experiments”, Mechanical Engineering, 75: 3-8, (1953).
  • [29] Yeşildal, F., “Sprey soğutmada ısı ve akış karakteristiklerinin belirlenmesi”, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, (2014).
  • [30] Yeşildal F., Yakut K., “Optimization of the spray cooling parameters for a heat sink by the Taguchi method”, Atomization and Sprays, 27: 1063-1075, (2017).
  • [31] Deng W., Gomez A., “Electrospray cooling for microelectronics”, International Journal of Heat and Mass Transfer, 54: 2270-2275, (2011).