Nimonic 80A Alaşımının Johnson-Cook Model Parametrelerinin Sonlu Elemanlar Yöntemiyle Doğrulanması

Nimonic 80A alaşımı, yüksek sürünme mukavemeti, oksidasyon direnci ve yüksek sıcaklıktaki korozyona karşı güçlü direnci nedeniyle tercih edilmektedir. Bu makale Nimonic 80A süperalaşımının malzeme yapısal denklemini (Johnson-Cook parameters) belirlemek için yazılmıştır. Literatürdeki farklı malzeme yapısal denklemlerinin (Zerille Armstrong, Bodner Partom, JohnsonCook) arasından Johnson-Cook modeli tercih edilmiştir. Denklem parametrelerinin belirlenmesi için 3 farklı tipte basma testleri uygulanmıştır. Bunların ilki oda sıcaklığında gerçekleşen yarı-statik basma testleridir. Bu testler 10-3, 10-2 ve 10-1 s-1 gerinim hızlarında gerçekleştirilmiştir. Dolayısıyla bütün testler için referans gerinim hızı 10-3 seçilmiştir. İkinci test olarak oda sıcaklığında Split -Hopkinson çekme cihazı kullanılarak yüksek gerinim hızlarında (370 ~ 954 s-1) basma testleri gerçekleşmiştir. Son olarak referans gerinim hızında (10^-3 s^-1) yüksek sıcaklıklarda (24 ~ 200 °C) basma testleri yapılmıştır. Testlerin birbiri ile uygun olduğu gözlemlenmiş olup, bu testlerden elde edilen veriler ile malzemeye ait Johnson-Cook parametreleri belirlenmiştir. Son olarak, sonlu elemanlar yöntemi vasıtasıyla gerçekleştirilen basma testi simülasyonları parametrelerin uygunluğunu onaylamak adına ANSYS Workbench yazılımında yapılmıştır. Bu sonuçlar ışığında, deneysel ve simülasyon sonuçları arasında %3.23 sapma elde edilmiştir. Bu sapma miktarı, Nimonic 80A alaşımına ait belirlenen Johnson-Cook model parametrelerinin doğruluğunu kanıtlamaktadır..

Confirmation of johnson-cook model parameters for nimonic 80A alloy by finite element method

Nimonic 80A superalloy is frequently used due to its high creep resistance, oxidation resistance and high resistance to hightemperature corrosion. On the other hand, due to compatibility of simulation of plastic deformation processes, Johnson-Cook modelis chosen among the materials models such as Zerille Armstrong, Bordner Partom, Steinberg-Guinan etc. In this study, primarily,quasi-static compression tests were performed for 10-3, 10-2 and 10-1 s-1 strain rates at room temperature. Secondly, dynamiccompression tests were secondly conducted at high strain rates ranging from 370 to 954 s-1 using the Split Hopkinson Pressure Bar(SHPB) apparatus. Then, the compression tests were conducted at a temperature level from 24~200 °C at the reference strain rate.Johnson-Cook model parameters of Nimonic 80A were determined by analyzing the data obtained from the tests. Lastly, thecompression simulations with finite element method (FEM) were performed in ANSYS Workbench to confirm the accuracy of theparameters. In the light of the results, it was determined that there is an average of %3.23 deviation between the experimental andthe simulation values. The result showed that accuracy of the Johnson-Cook parameters for Nimonic 80A superalloy was verifiedwith FEM.

___

  • 1. Kim, D. K., Kim, D. Y., Ryu, S. H., and Kim, D. J., "Application of nimonic 80A to the hot forging of an exhaust valve head", Journal Of Materials Processing Technology, 113 (1–3): 148–152 (2001).
  • 2. Zhu, Y., Zhimin, Y., and Jiangpin, X., "Microstructural mapping in closed die forging process of superalloy Nimonic 80a valve head", Journal Of Alloys And Compounds, 509 (20): 6106–6112 (2011).
  • 3. Quan, G., Pan, J., and Wang, X., "Prediction of the Hot Compressive Deformation Behavior for Superalloy Nimonic 80A by BP-ANN Model", Applied Sciences, 6 (3): 66 (2016).
  • 4. Günay, M., Korkmaz, M. E., and Yaşar, N., "Finite element modeling of tool stresses on ceramic tools in hard turning", Mechanika, 23 (3) (3): 432–440 (2017).
  • 5. Korkmaz, M. E. and Günay, M., "Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel", Arabian Journal For Science And Engineering, 43 (9): 4863–4870 (2018).
  • 6. Gok, K., "Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations", Measurement, 75: 57– 68 (2015).
  • 7. Parida, A. K. and Maity, K., "Numerical and experimental analysis of specific cutting energy in hot turning of Inconel 718", Measurement, 133: 361–369 (2019).
  • 8. Jain, A., Khanna, N., and Bajpai, V., "FE simulation of machining of Ti-54M titanium alloy for industry relevant outcomes", Measurement, 129: 268–276 (2018).
  • 9. Parida, A. K. and Maity, K., "Effect of nose radius on forces, and process parameters in hot machining of Inconel 718 using finite element analysis", Engineering Science And Technology, An International Journal, 20 (2): 687–693 (2017).
  • 10. Asif. M, M., Shrikrishana, K. A., and Sathiya, P., "Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints", Engineering Science And Technology, An International Journal, 18 (4): 704–712 (2015).
  • 11. Parida, A. K. and Maity, K., "Comparison the machinability of Inconel 718, Inconel 625 and Monel 400 in hot turning operation", Engineering Science And Technology, An International Journal, 21 (3): 364–370 (2018).
  • 12. Şerban, D. A., Marsavina, L., Rusu, L., and Negru, R., "Numerical study of the behavior of magnesium alloy AM50 in tensile and torsional loadings", Archive Of Applied Mechanics, (1): 1–7 (2018).
  • 13. Dorogoy, A. and Rittel, D., "Determination of the johnson-cook material parameters using the SCS specimen", Experimental Mechanics, 49 (6): 881–885 (2009).
  • 14. Schindler, S., Steinmann, P., Aurich, J. C., and Zimmermann, M., "A thermo-viscoplastic constitutive law for isotropic hardening of metals", Archive Of Applied Mechanics, 87 (1): 129–157 (2017).
  • 15. Yin, T., Bai, L., Li, X., Li, X., and Zhang, S., "Effect of thermal treatment on the mode I fracture toughness of granite under dynamic and static coupling load", Engineering Fracture Mechanics, 199: 143–158 (2018).
  • 16. Verleysen, P. and Degrieck, J., "Experimental investigation of the deformation of Hopkinson bar specimens", International Journal Of Impact Engineering, 30 (3): 239–253 (2004).
  • 17. Lee, S., Kim, K.-M., Park, J., and Cho, J.-Y., "Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test", International Journal Of Impact Engineering, 113: 191–202 (2018).
  • 18. Nguyen, K.-H., Kim, H. C., Shin, H., Yoo, Y.-H., and Kim, J.-B., "Numerical investigation into the stress wave transmitting characteristics of threads in the split Hopkinson tensile bar test", International Journal Of Impact Engineering, 109: 253–263 (2017).
  • 19. Karkalos, N. E. and Markopoulos, A. P., "Determination of Johnson-Cook material model parameters by an optimization approach using the fireworks algorithm", Procedia Manufacturing, 22: 107–113 (2018).
  • 20. Tan, Y. B., Ma, Y. H., and Zhao, F., "Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy", Journal Of Alloys And Compounds, 741: 85–96 (2018).
  • 21. Limbadri, K., Toshniwal, K., Suresh, K., Kumar Gupta, A., V Kutumbarao, V., Ram, M., Ravindran, M., and Kalyankrishnan, G., "Stress Variation of Zircaloy-4 and Johnson Cook Model for rolled sheets.", Materials Today: Proceedings, 5 (2): 3793–3801 (2018).
  • 22. Ducobu, F., Rivière-Lorphèvre, E., and Filippi, E., "On the importance of the choice of the parameters of the Johnson-Cook constitutive model and their influence on the results of a Ti6Al4V orthogonal cutting model", International Journal Of Mechanical Sciences, 122: 143–155 (2017).
  • 23. Korkmaz, M. E., Verleysen, P., and Günay, M., "Identification of Constitutive Model Parameters for Nimonic 80A Superalloy", Transactions Of The Indian Institute Of Metals, 71 (12): 2945–2952 (2018).
  • 24. Samantaray, D., Mandal, S., and Bhaduri, A. K., "A comparative study on Johnson Cook, modified ZerilliArmstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel", Computational Materials Science, 47 (2): 568–576 (2009).
  • 25. Calvo, J., Cabrera, J. M., Guerrero-Mata, M. P., De La Garza, M., and Puigjaner, J. F., "Characterization of the hot deformation behaviour of nimonic 80A and 263 Nibased superalloys", Proceedings Of The 10th International Conference On Technology Of Plasticity, ICTP 2011, Aachen, 892–896 (2011).
  • 26. Sjöberg, T., Kajberg, J., and Oldenburg, M., "Fracture behaviour of Alloy 718 at high strain rates, elevated temperatures, and various stress triaxialities", Engineering Fracture Mechanics, 178: 231–242 (2017).
  • 27. ANSYS Workbench 19.1 Edition.
  • 28. Korkmaz, M.E., "Determination and Verification of Johnson–Cook Parameters for 430 Ferritic Steels via Different Gage Lengths", Transactions of the Indian Institute of Metals, doi.org/10.1007/s12666-019-01734-9.
  • 29. Korkmaz, M. E., Günay, M. and Verleysen, P., Investigation of tensile Johnson-Cook model parameters for Nimonic 80A superalloy, Journal of Alloys and Compounds, 801: 542-549 (2019).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Investigation of Structural, Optical and Electrical Properties of Al0.3Ga0.7N/GaN HEMT Grown by MOCVD

Ömer AKPINAR, A.Kürşat BİLGİLİ, M. Kemal ÖZTÜRK, Süleyman ÖZÇELİK, Ekmel ÖZBAY

Ankastre Tabakalı Kompozit Kare Plakaların yer Değişimi Davranışı Üzerinde Fiber Oryantasyon Açılarının Etkilerinin İncelenmesi

Savaş EVRAN

Inertia and Droop Controller for a Modern Variable Speed Wind Turbine to Provide Frequency Control in a Microgrid

Ali HASSAN, Müfit ALTIN, FERHAT BİNGÖL

MOCVD ile Büyütülen Al0.3Ga0.7N/GaN HEMT'nin Yapısal, Optik ve Elektriksel Özelliklerinin Araştırılması

A. Kürşat BİLGİLİ, Ömer AKPINAR, M. Kemal ÖZTÜRK, Süleyman ÖZÇELİK, Ekmel ÖZBAY

Termoelektrik peltier'in ısıtma ve soğutma performansının karşılaştırılması için deneysel çalışma

Faraz AFSHARİ

Kereste Kurutmada Enerji Verimliliği - Güneş Enerjisi İle Kızılçam (Pinus brutia) Kerestesi Kurutma Örneği

Hasan KORKMAZ, Öner ÜNSAL, HIZIR VOLKAN GÖRGÜN, Erkan AVCI

Estimations of Stress Concentration Factors (Cw/Kts) For Helical Circular/Square Cross Sectional Tension-Compression Springs And Artificial Neural Network Modelling

M. Tolga ÖZKAN, İhsan TOKTAŞ, Kaan DOĞANAY

CuZn39Pb3 malzemenin torna tezgâhında işlenmesinde oluşan akım, ses şiddeti, titreşim ve yüzey pürüzlülük değeri arasındaki ilişkinin incelenmesi

Abidin ŞAHİNOĞLU, ABDULKADİR GÜLLÜ

Flow and Heat Transfer Characteristics of Inclined Jet Impingement on a Flat Plate

Amir LAK, TAMER ÇALIŞIR, Şenol BAŞKAYA

Mahremiyet korumalı büyük veriyayınlama için kavramsal model önerileri

Yavuz CANBAY, Yılmaz VURAL, Şeref SAĞIROĞLU