Geometri İç Kalınlığının Yeni Tasarlanan Ökzetik Yapı Üzerine Etkisinin Araştırılması

Poisson oranı, malzemelerin ve yapının önemli mekanik özelliğidir. Yapı ve malzemeler negatif Poisson’s oranına sahip olduklarında Ökzetik olarak adlandırılırlar. Yeni yapıların tasarlanmasında Ökzetik yapıların özellikleri önemlidir, özellikle yapısal ve işlevsel olarak görevi olan mekanik özellikleri. Bu konu ile ilgili birçok araştırmacı deneysel ve teorik çalışma yapmıştır. Bu çalışmada, sonlu elemanlar analizi ile yeni tasarlanmış Ökzetik yapının Poisson’s oranı incelenmiştir. Geometri iç kalınlık yapılandırmalarına göre 14 farklı kafes yapısı incelenmiştir. Bütün incelenen yapılar negatif Poisson’s oranına sahiptir. Geometri iç kalınlığı arttıkça negatif Poisson’s oranı -1’e yaklaşmaktadır. En düşük Poisson’s oranı 4x4’lik düzendeki kafes yapısı ile 4x2’lik düzendeki kafes yapısının Poisson’s oranına bakıldığına en düşük Poisson’s oranı 4x2 ‘lik düzendeki kafes yapısına aittir. 4x2’lik düzendeki kafes yapısı daha Ökzetiktir. 4.9 mm geometri iç kalınlığı ve 4x2’lik düzende incelenen örnek yapı -0,55 ile en düşük Poisson’s oranına sahiptir. Uygulanan kuvvete yapının göstermiş olduğu etkiyi göstermek için sertlik değerleri ile sertlik/kütle değerleri incelenmiştir. Enerji sönümleme kabiliyetleri analiz edilmiştir.

Investigation of The Effect of Geometry Inner Thickness on New Designed Auxetic Structure

Poisson’s ratio is important mechanical property of materials and structure. Material and Structure showing negative Poisson’s ratios are called Auxetic. Properties of the Auxetic structures are very important to design the new structure, especially mechanical properties of the Auxetic materials that have structurally and functionally mission. Many researchers made experimental and theoretical works apropos this matter. In this study, the newly designed Auxetic lattice structure Poisson’s ratio was checked over via exploiting finite element analysis. 14 different lattice structures with respect to inner lattice thickness configurations are investigated. All examined structures have a negative Poisson’s ratio. Inner lattice thickness is increased; negative Poisson’s ratio values are decreased (closes to -1.) in these examined lattice structures. 4x2 lattice orientation has lowest Poisson’s ratio than 4x4 Lattice structure Poisson’s ratio, 4x2 is more Auxetic. 4.9 mm inner lattice thickness and 4x2 lattice matrix examined example has lowest Poisson’s ratio that is -0,55. Beneficial to indicate the purview of the structure on the applied force, the stiffness values and the stiffness/mass values were examined. Their energy dissipation capabilities were analyzed.

___

  • [1] Mazaev A., Ajeneza O., Shitikova O. “Auxetics materials: classification, mechanical properties and applications,” Materials Science and Engineering, 747. (2020).
  • [2] Günel O. Ranjbar M. “Review on auxetic materials.” ICAMMEN, (1) 24, 8-19. (2018).
  • [3] Novak N., Biasetto L., Rebesan P., Zanini F., Carmignato S., et al. “Experimental and computational evaluation of tensile properties of additively manufactured hexa- and tetrachiral auxetic cellular structures.” Additive Manufacturing. 45-68. (2021).
  • [4] Gohar S., Hussain G., Ilyas M., Ali A. “Performance of 3D printed topologically optimized novel auxetic structures under compressive loading: experimental and FE analyses.” Journal of materials research and technology 1(5), 394 -408. (2021).
  • [5] Günaydın K. “Numerical and experimental investigation on the crushing behaviour of auxetic lattice cell produced with additive manufacturing techniques.” Published masters, Istanbul Technical University. (April 2020).
  • [6] Türkoğlu İ. “Investigation of behavior of thermoplastic sandwich structures with auxetic core geometries produced by 3-dimensional additive manufacturing method under static and dynamic loads.” Published doctoral dissertation, Bursa Uludağ University. (2020).
  • [7] Gök S. “Structural desıgn and analysıs of an ımpact resıstant auxetıc metamaterıal.” Published masters, Istanbul Technical University. (February 2021).
  • [8] Meena K., Singamneni S. “A new auxetic structure with significanly reduced stress concetration effects.” Materials and Design, (173), (2019).
  • [9] Luo C., Zhen C., Zhang X., Zhang G., Ren X., et al. “Design, manufacturing and applications of auxetic tubular structures: A review.” Thin-Walled Structures, (163), (2021).
  • [10] Najafi M., Ahmadi H., Gholamhossein L. “Experimental investigation on energy absorption of auxetic structures.” Materials Today: Proceedings, (2020).
  • [11] Shao Y. “Insight into the negative Poisson’s ratio effect of the gradient auxetic reentrant honeycombs.” Composite Structures, (274), (2021).
  • [12] Nedoushan R., An Y., Yu W., Abghary M. “Novel triangular auxetic honeycombs with enhanced stiffness.” Composite Structures, (277). (2021).
  • [13] Tabacu S., Stanescu N.D. “A theoretical model for the estimate of the reaction force for 3D auxetic anti-tetra chiral tubular structures under tensile loads.” Thin-Walled Structures, (168). (2021).
  • [14] Shena J., Liua K., Zenga O., Gea,J., Donga Z., et al. “Design and mechanical property studies of 3D re-entrant lattice auxetic structure.” Aerospace Science and Technology, (118). (2021).
  • [15] Gao Y., Wei X., Han X., Zhou Z., Xiong J.” Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism.” International Journal of Solids and Structures, (233). (2021).
  • [16] Bronder S., Adorna M., Fíla T., Koudelka P., Falta J., Jiroušek O. Et al. “Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization.” Adv. Eng. Mater., (23). (2021).
  • [17] Sangsefidi A.R., Dibajian S. H., Kadkhodapour J., Anaraki A. P., Schmauder S., Schneider Y. “An Abaqus plugin for evaluation of the Auxetic structure performance.” Springer Nature, (2021).
  • [18] Wu W., Liu P., Kang Z. “A novel mechanical metamaterial with simultaneous stretching- andcompression-expanding property”. Materials & Design, (208). (2021).
  • [19] Zhanga G., Rena X., Jianga W., Zhanga X., Luoa C., Zhanga Y., Xieb M. “A novel auxetic chiral lattice composite: Experimental and numerical study.” Composite Structures, (282). (2022).
  • [20] Wallbanks M., Khan M., Bodaghi M., Andrew Triantaphyllou A., Serjouei A. “On the design workflow of auxetic metamaterials for structural applications.” Smart Mater. Struct. (31).(2022).
  • [21] Kemiklioglu U. “Novel Design and Comparision of Structural and Modal Analyses of Auxetic Geometry versus Honeycomb Geometry.” Journal of Applied Mechanical Engineering, (2). (2021).
  • [22] Wang S., Deng C., Ojo O., Akinrinlola B., Kozub J. Wu L. “Design and modeling of a novel three dimensional auxetic reentrant honeycomb structure for energy absorption.” Composite Structures, (280). (2022).
  • [23] Photiou D., Avraam S., Sillani F., Verga F, Jay O. Papadakis L. “Experimental and Numerical Analysis of 3D Printed Polymer Tetra-Petal Auxetic Structures under Compression.” Appl. Sci. (11). (2021).
  • [24] Penrose R. “Islamic Geometric Patterns”, Springer Nature, ISBN 978-1-4419-0216-0, Pages 616, New York-USA 2017.
  • [25] Ansys Analysis Sofware Manual Book, ANSYS R19.2
  • [26] Ergene B. and Yalçın B., “Finite element analyzing of the effect of crack on mechanical behavior of honeycomb and re-entrant structures”, Journal of Polytechnic, 23(4): 1015-1025, (2020).
  • [27] Özçatalbaş Y., “Machinability of steels: the relationship between machinability and chemical composition, microstructure and also mechanical properties”, Journal of Polytechnic, 23(2): 457-482, (2020).
  • [28] Ozkan M.T., Toktas I. and Doganay S.K., “Estimations of stress concentration factors Cw/Kts for helical circular/square cross sectional tension-compression springs and artificial neural network modelling”, Journal of Polytechnic, 23(3): 901-908, (2020).
  • [29] Toktas I., Ozkan M. T., Erdemir F. and Yuksel N., “Determination of stress concentration factor (Kt) for a crankshaft under bending loading: an artificial neural networks approach”, Journal of Polytechnic, 23(3): 813-819, (2020).