Dizel Motorlarda Performans ve Egzoz Emisyonlarının n-hexadecane Katkı Maddesi ile İyileştirilmesi

Yakıtların fiziksel ve kimyasal özellikleri; motor performansı ve emisyonları önemli ölçüde etkilemektedir. Yakıt kalitesini arttırmak, daha iyi yanma ve emisyonları azaltmak için yakıt içerisine çeşitli katkı maddeleri ilave edilmektedir. Bu katkı maddeleri hidrokarbonların daha iyi yanması için katalitik bir etki oluşturur. Bu çalışmada, dizel yakıtına ilave edilen n-hexadecane katkı maddesi değişen yakıt özelliklerinin motor performansı ve egzoz emisyonları üzerine etkisi incelenmiştir. Deneyler sonucunda n-hexadecane ilave edilen yakıtların viskozitesi azalırken setan sayısı artmaktadır. Yakıt özelliklerinde ki bu iyileşme, yakıtın silindir içerisine püskürtüldüğünde daha iyi atomize olmasına ve yanma kalitesinin artmasına neden olmaktadır. Deneyler sonucun da en iyi iyileşme %16 n-hexadecane (DHD16) oranında elde edilmiştir. 2800 1/min’de dizel yakıtına göre (D0) güç %1.06 artarken, özgül yakıt tüketimi %2.38 azalmaktadır. Karbon monoksit (CO) emisyonu %10.24, hidrokarbon (HC) emisyonu %19.31, is emisyonu %19.96 azalmaktadır. Yanma kalitesinin iyileşmesi ısı yayılımının yükselmesine sebep olurken azot oksit (NOx) emisyonu %6.66 arttırmıştır.  Setan sayısındaki artışa bağlı olarak maksimum silindir basıncı artmış tutuşma gecikmesi azalmıştır.

Improvement of Performance and Exhaust Emissions in Diesel Engines by Addition of n-hexadecane Material

Physical and chemical properties of fuels significantly affect engine performance and emissions. Various additives are added to the fuel to improve fuel quality, better combustion and reduce emissions. These additives create a catalytic effect for better combustion of hydrocarbons. In this study, the effect of varying fuel properties on engine performance and exhaust emissions of n-hexadecane additive added to diesel fuel was investigated. As a result of the experiments, while the viscosity of n-hexadecane added fuels decreased, the cetane number increased. This improvement in fuel properties leads to better atomization and increased combustion quality when fuel is injected into the fuel cylinder. As a result, the best improvement was obtained at 16% n-hexadecane (DHD16) ratio. At 2800 1/min, the power increases by 1.06% compared to diesel fuel (D0) while the brake specific fuel consumption decreases by 2.38%. Carbon monoxide (CO) emission decreases by 10.24%, hydrocarbon (HC) emission decreases by 19.31% and smoke emission decreases by 19.96%. Improvement of combustion quality caused increase of heat emission while nitrogen oxide (NOx) increased the emission by 6.66%. Due to the increase in cetane number, the maximum cylinder pressure increased and the ignition delay decreased.

___

  • [1] Kaimal V.K. and Vijayabalan P., “A detailed study of combustion characteristics of a DI diesel engine using waste plastic oil and its blends”, Energy Conversion and Management, 105: 951-956, (2015).
  • [2] Du J., Sun W., Guo L., Xiao S., Tan M., Li G. and Fan L., “Experimental study on fuel economies and emissions of direct-injection premixed combustion engine fueled with gasoline/diesel blends”, Energy Conversion and Management, 100: 300-309, (2015).
  • [3] Çelik M., Solmaz H. and Yücesu H.S., “Examination of the effects of organic based manganese fuel additive on combustion and engine performance”, Fuel Process. Technol. 139: 100-107, (2015).
  • [4] Shahabuddin M., Liaquat A.M., Masjuki H.H., Kalam M.A. and Mofiruj M., “Ignition delay, combustion and emission characteristics of diesel engine fueled with biodiesel, Renew. Sustain. Energy Rev. 21: 623-632, (2013).
  • [5] Mangus M., Kiani F., Mattson J., Tabakh D., Petka J., Depcik C., Peltier E. and Stagg-Williams S., “Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection”, Energy, 89: 932-945, (2015).
  • [6] Ghasemi A., Barron R.M. and Balachandar R., “Spray-induced air motion in single and twin ultra-high injection diesel sprays”, Fuel, 121: 284-297, (2014).
  • [7] Agarwal A.K., Som S., Shukla P.C., Goyal H. and Longman D. “In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels”, Applied Energy, 156: 138-148, (2015).
  • [8] Lenin M.A., Swaminathan M.R. and Kumaresan G., “Performance and emission characteristics of a DI diesel engine with a nano-fuel additive”, Fuel, 109: 362-365, (2013).
  • [9] Poon H.M., Pang K.M., Ng H.K., Gan S. and Schramm J., “Development of multi-component diesel surrogate fuel models – Part I: Validation of reduced mechanisms of diesel fuel constituents in 0-D kinetic simulations”, Fuel, 180: 433-441, (2016).
  • [10] Wang X., Wang X. and Chen J., “Experimental investigations of density and dynamic viscosity of n-hexadecane with three fatty acid methyl esters”, Fuel, 166: 553-559, (2016).
  • [11] Parmar S., Pant K.K., John M., Kumar K., Pai S.M. and Newalkar B.L. “Hydroisomerization of n-hexadecane over Pt/ZSM-22 framework: Effect of divalent cation exchange”, Journal of Molecular Catalysis A: Chemical, 404-405: 47–56, (2015).
  • [12] Öztürk E., “Performance, emissions, combustion and injection characteristics of a diesel engine fueled with canola oil–hazelnut soapstock biodiesel mixture”, Fuel Process. Technol. 129: 183-191, (2015).
  • [13] Çaynak S., Gürü M., Biçer A., Keskin A. and İçingür Y., “Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive, Fuel, 88: 534-538, (2009).
  • [14] Tesfa, B., Mishra, R., Zhang, C., Gu, F. and Ball, A.D. “Combustion and performance characteristics of CI engine runnin with biodiesel”, Energy, 51: 101-115, (2013).
  • [15] Challen B. and Baranescu R., “Diesel Engine Referance Book, Second edition”, McFarland, ISBN: 0-7506-2176-1, (1984).
  • [16] Avinash A., Natarajan S. and Mahalakshmi N.V., “Lean homogenous combustion of E-diesel using external mixture formation technique”, Alexandria Engineering Journal, 54: 271-279, (2015).
  • [17] Liu H., Wang Z., Wang J., He X., Zheng Y., Tang Q. and Wang J., “Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends”, Energy, 88: 793-800, (2015).
  • [18] Ashraful A.M., Masjuki H.H., Kalam M.A., Rashedul H.K., Sajjad H. and Abedin M.J., “Influence of anti-corrosion additive on the performance, emission and engine component wear characteristics of an IDI diesel engine fueled with palm biodiesel”, Energy Convers. Manag. 87: 48-57, (2014).
  • [19] Oliveira A., Morais A.M., Valente O.S. and Sodré J.R., “Combustion characteristics, performance and emissions from a diesel power generator fueled by B7-ethanol blends”, Fuel Process. Technol. 139: 67-72, (2015).
  • [20] Keskin A., Ocakoğlu K., Reşitoğlu I.A. and Gürü M., “Influence of titanium based fuel additive on diesel engine performance and emission, J. Fac. Eng. Archit. Gazi Univ. 28 (3): 671-676, (2013).
  • [21] Venu H. and Madhavan V., “Influence of diethyl ether (DEE) addition in ethanol-biodiesel-diesel (EBD) and methanol-biodiesel-diesel (MBD) blends in a diesel engine”, Fuel, 189: 377–390, (2017).
  • [22] An H., Yang W.M., Maghbouli A., Li J., Chou S.K., Chua K.J., Wang J.X. and Li L., “Numerical investigation on the combustion and emission characteristics of a hydrogen assisted biodiesel combustion in a diesel engine”, Fuel, 120: 186–194, (2014).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ