Covid-19 Sürecinde Mevcut Hastanelerde Mekanik Sistemlerinde Alınması Gereken Önlemler Ve Tecrübeler

SARS-CoV-2 (Covid-19) pandemisi hız kesmeden devam etmekte ve her geçen gün artan vaka sayıları ile karşılaşmaktayız. Bu süreçte bulaş riskinin kapalı alanlarda olması özellikle bu alanlardaki iklimlendirme sistemlerine dikkat çekmiştir. Mevcut durumda virüse karşı elimizdeki en iyi silahlar maske, fiziksel mesafe ve hijyendir. Ancak, kapalı alanlarda havalandırma ve iklimlendirme sistemleri ile bulaş riskinin azaltılması söz konusudur. Virüsün boyutları dikkate alındığında filtrasyon ve de UV-C lambaların kullanımı ve kapalı alandaki taze hava debisinin artırılması virüsün bulaş riskini oldukça azalttığını göstermiştir. Hastaneler, doğası gereği virüs yükünün en yoğun olduğu binalardır. Her ne kadar hastane içindeki mahallerin merkezi bir iklimlendirme sistemi olsa da bu süreçte bazı tedbirlerin alınması ve pandemi senaryoları düşünülmeden tasarlanmış olan bu cihazların da bulaş riskini minimize edecek biçimde çalıştırılması gerekmektedir. Özellikle negatif basınçlı odalar için geçici çözümler, yoğun bakımlarda basınçlandırmanın nasıl sağlanabileceği, klima santrallerinde alınabilecek önlemler, tesisat sisteminde dikkat edilmesi gereken konular vb. birçok önlem bu çalışmada ele alınmıştır. Ek olarak, pandemi senaryosuna göre çalıştırılması düşünülen bir yoğun bakım ünitesinde egzoz menfezinin gerektiğinde hastanın başının arkasına nasıl alınabileceği ile ilgili tasarım detayları da ele alınmıştır. Kapalı bir alanda Covid-19 enfeksiyon riski hesaplama aracının örnekler ile gösterimi de verilmiştir. UV-C sistemlerin uygulanmasında dikkat edilmesi gereken hususlar belirtilmiştir.

Precautions To Be Taken And Experiences in Mechanical Systems in Existing Hospitals Under Covid-19

The SARS-CoV-2 (Covid-19) pandemic continues without slowing down, and we are encountering an increasing number of cases every day. Within this period, the risk of contamination in closed areas has drawn attention especially to the air conditioning systems in these areas. In the current situation, the best weapons we have against the virus are mask, physical distance, and hygiene. However, it is possible to reduce the risk of contamination with ventilation and air conditioning systems in closed areas. Considering the size of the virus, filtration and the use of UV-C lamps and increasing the fresh air flow in the indoor area have shown that the risk of transmission of the virus is significantly reduced. Hospitals are the buildings where the virus load is the most intense by its nature. Although the spaces in the hospital have a central air conditioning system, some measures should be taken within this period and these devices, which were designed without considering pandemic scenarios, should be operated in a way to minimize the risk of contamination. Especially temporary solutions for negative pressure rooms, how to provide pressurization in intensive care units, measures that can be taken in air handling units, issues to be considered in the HVAC system, etc. many measures are discussed in this study. In addition, the design details of how the exhaust vent can be taken behind the patient's head when necessary in an intensive care unit that is planned to be operated according to the pandemic scenario are discussed. A demonstration of the Covid-19 infection risk calculation tool with examples in a closed area is also given. The points to be considered in the application of UV-C systems are specified.

___

  • [1] ASHRAE Position Document on Infectious Aerosols, https://www.ashrae.org/file%20library/about/position%20documents/pd_infectiousaerosols_2020.pdf, (2020).
  • [2] Dai H., Zhao B., “Association of infected probability of COVID-19 with ventilation rates in confined spaces: a Wells-Riley equation based investigation”, medRxiv 2020.04.21.20072397; doi: https://doi.org/10.1101/2020.04.21.20072397, (2020).
  • [3] https://elpais.com/ciencia/2020-06-06/radiografia-de-tres-brotes-asi-se-contagiaron-y-asi-podemos-evitarlo.html?ssm=whatsapp, (2020).
  • [4] Hyttinen M., et al., “Airborne Infection Isolation Rooms – A Review of Experimental Studies”, Indoor Built Environment, 20: 6, 584-594, (2011).
  • [5] Faridi, S., et al. “A field indoor air measurement of SARS- CoV-2 in the patient rooms of the largest hospital in Iran”, Science of the Total Environment, 725, 138401. https://doi.org/10.1016/j.scitotenv.2020.138401, (2020).
  • [6] http://gazi.edu.tr/posts/view/title/universitemiz,-kovid-19-bulasma-riskini-hesaplayan-yeni-bir-yontem-gelistirdi-261070, (2020).
  • [7] https://www.ttmd.org.tr/covid-19/covid-19-enfeksiyon-hesaplama-araci, (2020).
  • [8] Kowalski W.J., “Aerobiological engineering handbook” McGraw-Hill, New York, (2006).
  • [9] Kowalski W.J., Bahnfleth W.P., “UVGI design basics for air and surface disinfection”, HPAC Engineering 72(1):100-110, (2002).
  • [10] Morawska L., Milton D.K., “It is Time to Address Airborne Transmission of COVID-19”, [published online ahead of print, 2020 Jul 6]. Clin. Infect. Dis., doi:10.1093/cid/ciaa939, (2020).
  • [11] Fennelly K.P.,Martyny J.W., Fulton K.E., Orme I.M., Cave D.M., Heifets L.B., “Cough-generated aerosols of Mycobacterium Tuberculosis: A new method to study infectiousness”, American Journal of Respiratory and Critical Care Medicine, 169: 604–609, (2004).
  • [12] REHVA, Covid-19 Guidance Document, August 2020, “How to operate HVAC and other building service systems to prevent the spread of the coronavirus (SARS-CoV-2) disease (COVID-19) in workplaces, (2020).
  • [13] Shadpour F., “Makeshift Negative Pressure Patient Rooms In Response to Covid-19”, ASHRAE Journal, July 2020, 24-31, (2020).
  • [14] Stephens B., “HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne diseases”, NAFA Foundation Report, (2012).
  • [15] Sun Y., Wang Z., Zhang Y., Sundell J., “In China, students in crowded dormitories with a low ventilation rate have more common colds: Evidence for airborne transmission”, PLOS ONE, 6(11):e27140, (2011).
  • [16] Xie X.J., Li Y.G., Sun H.Q., Liu L., “Exhaled droplets due to talking and coughing”, Journal of The Royal Society Interface 6:S703–S714, (2009).
  • [17] Wainwright C.E., Frances M.W., O’Rourke P., Anuj S., Kidd T.J., Nissen M.D., Sloots T.P., Coulter C., Ristovski Z., Hargreaves M., Rose B.R., Harbour C., Bell S.C., Fennelly K.P., “Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative bacteria from patients with cystic fibrosis”, Thorax, 64: 926–931, (2009).
  • [18] Yılmazoğlu M.Z., “Kapalı Alanlar için Enfeksiyon Riski Hesaplama Aracı”, TTMD Isıtma, Soğutma, Havalandırma, Klima, Yangın ve Sıhhi Tesisat Dergisi, Sayı 127, 76-79, (2020).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ