Selective Antimicrobial Properties of W-Ge Nanocomposite Thin Films

Selective Antimicrobial Properties of W-Ge Nanocomposite Thin Films

The antimicrobial properties of W-Ge nanocomposite thin films as a function of Ge concentration were investigated within the scope of this study. The films were deposited on an AZ61Mg substrate using a magnetron sputter source with a co-deposition technique. Structural analyses showed that all coatings had a composite crystal structure. Additionally, the morphological investigation indicated that films had goosefoot-type structures at low Ge concentrations (5% and 10%), while Ge-rich films (40% and 60%) had cauliflower-type structures. The 20% Ge concentration coating had both structures. Regarding the surface morphology, the root mean square roughness of the surface reached its maximum value at a Ge concentration of 60% while the surface roughness and wettability of all the films showed an opposite trend. The antimicrobial activity of the W-Ge nanocomposite films against gram-negative (Salmonella typhimurium NRRLE 4413, Escherichia coli ATCC 25922) and gram-positive (Staphylococcus aureus 6538 P., Bacillus subtilis IM 622) bacteria was investigated via disc diffusion antibiotic sensitivity assay. Based on the antibacterial activity test, it was concluded that although all the films had antimicrobial efficiency against gram-negative and gram-positive bacteria, they were more effective against gram-positive bacteria. Moreover, with the increased surface roughness of the films, the number of grain boundaries, which cause an increase in the intensity of the oxide phases of the metals, increases, resulting in better antibacterial activity.

___

  • Akhavan O., Ghaderi E., 2010, ACS Nano, 4, 5731 google scholar
  • Arslan M. E., Kurt M. Ş., Aslan N., Kadi A., Öner S., Çobanoğlu Ş., Yazici A., 2022, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 1667 google scholar
  • Bian D., et al., 2017, Acta Biomaterialia, 64, 421 google scholar
  • Cassie A. B. D., Baxter S., 1944, Trans. Faraday Soc., 40, 546 google scholar
  • Chuang K.-T., Abdullah H., Leu S.-J., Cheng K.-B., Kuo D.-H., Chen H.-C., Chien J.-H., Hu W.-T., 2017, Journal of Photochemistry and Photobiology A: Chemistry, 337, 151 google scholar
  • Eaton P., Fernandes J. C., Pereira E., Pintado M. E., Xavier Malcata F., 2008, Ultramicroscopy, 108, 1128 google scholar
  • Foadi F., Vaez Allaei S. M., Palasantzas G., Mohammadizadeh M. R., 2019a, Phys. Rev. E, 100, 022804 google scholar
  • Foadi F., ten Brink G. H., Mohammadizadeh M. R., Palasantzas G., 2019b, Journal of Applied Physics, 125 google scholar
  • Helmersson U., Lattemann M., Bohlmark J., Ehiasarian A. P., Gud-mundsson J. T., 2006, Thin Solid Films, 513, 1 google scholar
  • Jena G., Anandkumar B., Vanithakumari S., George R., Philip J., Amarendra G., 2020, Progress in Organic Coatings, 139, 105444 google scholar
  • Kaplan B. J., Parish W. W., Andrus G. M., Simpson J. S. A., Field C. J., 2004, The Journal of Alternative and Complementary Medicine, 10, 337 google scholar
  • Khalid A. Q., AlJohny B. O., Wainwright M., 2014, African Journal of Microbiology Research, 8, 1080 google scholar
  • Kurt M. Ş., Arslan M. E., Yazici A., Mudu İ., Arslan E., 2021, Journal of Materials Science: Materials in Medicine, 32, 6 google scholar
  • Kuruoğlu F., 2022, Microfluidics and Nanofluidics, 26, 72 google scholar
  • Law K.-Y., 2014, The Journal of Physical Chemistry Letters, 5, 686 google scholar
  • Lück B. E., Mann H., Melzer H., Dunemann L., Begerow J., 1999, Nephrology Dialysis Transplantation, 14, 2464 google scholar
  • Martin P. M., 2009, Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology. William Andrew google scholar
  • Menazea A., Awwad N. S., 2020, Journal of Materials Research and Technology, 9, 9434 google scholar
  • Nagata N., Yoneyama T., Yanagida K., Ushio K., Yanagihara S., Mat-subara O., Eishi Y., 1985, The Journal of Toxicological Sciences, 10, 333 google scholar
  • Okada K., Okagawa K., Kawakami K., et al. 1989, Clinical Nephrol-ogy, 31, 219 google scholar
  • Park S.-M., Ikegami T., Ebihara K., Shin P.-K., 2006, Applied Surface Science, 253, 1522 google scholar
  • Roy D., Halder N., Chowdhury T., Chattaraj A., Roy P., 2015, IOSR J VLSI Signal Process, 5, 69 google scholar
  • Sarcan F., 2020, Nanotechnology, 31, 435502 google scholar
  • Sellappa S., Jeyaraman V., 2011, International Journal of Pharma and Bio Sciences, 2, 854 google scholar
  • Somogyvari Z., Langer G., Erdelyi G., Balazs L., 2012, Vacuum, 86, 1979 google scholar
  • Tan G.-L., Tang D., Dastan D., Jafari A., Shi Z., Chu Q.-Q., Silva J. P., Yin X.-T., 2021, Ceramics International, 47, 17153 google scholar
  • Voevodin A. A., O’Neill J. P., Prasad S. V., Zabinski J. S., 1999, Journal of Vacuum Science & Technology A, 17, 986 google scholar
  • Wenzel R. N., 1936, Industrial & Engineering Chemistry, 28, 988 google scholar
  • Wu S., Altenried S., Zogg A., Zuber F., Maniura-Weber K., Ren Q., 2018a, ACS Omega, 3, 6456 google scholar
  • Wu S., Zuber F., Maniura-Weber K., Brugger J., Ren Q., 2018b, Journal of Nanobiotechnology, 16, 20 google scholar
  • Young T., 1805, Philosophical Transactions of the Royal Society of London, 95, 65 google scholar
  • Zboun M., Arısan V., Topcuoglu N., Kuruoglu F., Sener L. T., Sarcan F., 2020, Surfaces and Interfaces, 21, 100703 google scholar