Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals
Band Profile and Surface Acoustic Wave Attenuation Analysis of Polygonal Cavity-type Piezoelectric Phononic Crystals
In this study, we examined the dispersion profiles and surface acoustic wave attenuation properties of polygonal cavity-type phononic crystals in relation to changes in the number of vertices. Both band analysis and transmission spectrum calculations are performed using finite element method simulations. The findings indicate an increase in the number of vertices of phononic crystal results in an increase in local resonance bandgap frequencies and corresponding transmission peaks. Furthermore, the phononic crystal bandgap widens from 7.3 MHz to 11.1 MHz as the number of vertices increases from 3 to 14, as demonstrated by the obtained dispersion profiles. Comparable features are observed in the transmission spectra for alternating polygonal cavity-type phononic crystal periodic grooves. Additionally, the ability of the surface acoustic wave attenuation is affected by the phononic crystal shape, and the resonance frequency of the phononic crystals can be adjusted by changing the number of vertices.
___
- Achaoui Y., Khelif A., Benchabane S., Robert L., Laude V., 2011, Physical Review B, 83, 104201 google scholar
- Achaoui Y., Laude V., Benchabane S., Khelif A., 2013, Journal of Applied Physics, 114, 104503 google scholar
- Agostini M., Greco G., Cecchini M., 2019, IEEE Access, 7, 70901 google scholar
- Ash B. J., Worsfold S. R., Vukusic P., Nash G. R., 2017, Nature Communications, 8, 174 google scholar
- Bourquin Y., Wilson R., Zhang Y., Reboud J., Cooper J. M., 2011, Advanced Materials, 23, 1458 google scholar
- Cao D., Hu W., Gao Y., Guo X., 2019, Smart Materials and Structures, 28, 085014 google scholar
- Collins D. J., Devendran C., Ma Z., Ng J. W., Neild A., Ai Y., 2016, Science Advances, 2, e1600089 google scholar
- Gharibi H., Mehaney A., 2021, Physica E: Low-dimensional Systems and Nanostructures, 126, 114429 google scholar
- Gharibi H., Khaligh A., Bahrami A., Ghavifekr H. B., 2019, Journal of Molecular Liquids, 296, 111878 google scholar
- Guo J. C., Zhang Z., 2022, Applied Physics A, 128, 126 google scholar
- Guo L., Zhao S., Guo Y., Yang J., Kitipornchai S., 2023, International Journal of Mechanical Sciences, 240, 107956 google scholar
- HekiemN. L. L., Ralib A. A. M., HattarM. A. b. M., Ahmad F., Nordin A. N., Rahim R. A., Za’bah N. F., 2021, Sensors and Actuators A: Physical, 329, 112792 google scholar
- Jin Y., Pennec Y., Bonello B., Honarvar H., Dobrzynski L., Djafari-Rouhani B., Hussein M. I., 2021, Reports on Progress in Physics, 84, 086502 google scholar
- Kidakova A., Boroznjak R., Reut J., Öpik A., Saarma M., Syritski V., 2020, Sensors and Actuators B: Chemical, 308, 127708 google scholar
- Korozlu N., Biçer A., Sayarcan D., Kaya O. A., Cicek A., 2022, Ultrasonics, 124, 106777 google scholar
- Kumar A., Prajesh R., 2022, Sensors and Actuators A: Physical, p. 113498 google scholar
- Kuruoğlu F., 2022, Cumhuriyet Science Journal, 43, 346 google scholar
- Kushwaha M. S., Halevi P., Dobrzynski L., Djafari-Rouhani B., 1993, Physical Review Letters, 71, 2022 google scholar
- Kushwaha M. S., Halevi P., Martinez G., Dobrzynski L., Djafari-Rouhani B., 1994, Physical Review B, 49, 2313 google scholar
- Li X., Ning S., Liu Z., Yan Z., Luo C., Zhuang Z., 2020, Computer Methods in Applied Mechanics and Engineering, 361, 112737 google scholar
- Mead D., 1996, Journal of Sound and Vibration, 190, 495 google scholar
- Muhammad Lim C., Leung A. Y. T., 2021, Acoustics, 3, 25 google scholar
- Oh J. H., Lee I. K., Ma P. S., Kim Y. Y., 2011, Applied Physics Letters, 99, 083505 google scholar
- Pouya C., Nash G. R., 2021, Communications Materials, 2, 55 google scholar
- Qian J., Ren J., Liu Y., Lam R. H. W., Lee J. E.-Y., 2020, Analyst, 145, 7752 google scholar
- Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S., 2016, Microsystem Technologies, 22, 1593 google scholar
- Sigalas M., Economou E., 1993, Solid State Communications, 86,141 Su R., et al., 2021a, IEEE Transactions on Device and Materials Reliability, 21, 365 google scholar
- Su R., et al., 2021b, IEEE Electron Device Letters, 42, 438 google scholar
- Tateno S., Kurimune Y., Matsuo M., Yamanoi K., Nozaki Y., 2021, Physical Review B, 104, L020404 google scholar
- Topaltzikis D., et al., 2021, Applied Physics Letters, 118, 133501 google scholar
- Ulug B., Kuruoğlu F., Yalçın Y., Erol A., Sarcan F., Şahin A., Cicek A., 2022, Journal of Physics D: Applied Physics, 55, 225303 google scholar
- Vasseur J. O., Hladky-Hennion A.-C., Djafari-Rouhani B., Duval F., Dubus B., Pennec Y., Deymier P. A., 2007, Journal of Applied Physics, 101, 114904 google scholar
- Wang Y., Wang Y., Liu W., Chen D., Wu C., Xie J., 2019, Sensors and Actuators A: Physical, 288, 67 google scholar
- Xie Y., Mao Z., Bachman H., Li P., Zhang P., Ren L., Wu M., Huang T. J., 2020, Journal of biomechanical engineering, 142 google scholar
- Yavuzcetin O., Ozturk B., Xiao D., Sridhar S., 2011, Optical Materials Expres s, 1, 1262 google scholar
- Zhang X.-F., Zhang Z.-W., He Y.-L., Liu Y.-X., Li S., Fang J.-Y., Zhang X.-A., Peng G., 2015, Frontiers of Physics, 11 google scholar
- Zhang Z.-D., LiuF.-K., YuS.-Y., LuM.-H., Chen Y.-F., 2020, Applied Physics Express, 13, 044002 google scholar