GÜNEŞ TAKİP SİSTEMLERİ İÇİN Al/P-Si/Zn:CuO/Al FOTODİYOTLARI

Bu çalışmada, Zn katklı CuO ince filmleri hazırlanarak Al-p-Si/Zn katkılı CuO/Al fotodiyotları üretilmiştir. Üretilen fotodiyotların akım-voltaj (I–V) ölçümleri karanlıkta ve farklı aydınlatma şiddetleri altında alınmıştır.  Al-p-Si/Zn katkılı CuO/Al fotodiyotları iyi bir doğrultma ve iyi bir fototepki özelliği göstermiştir. %0.1 Zn katkılı diyotunun en yüksek doğrultma oranına (1.73x104) ve en yüksek fototepki’ye (2.07x103) sahip olduğu saptanmıştır. Frekansa bağlı kapasite-voltaj ölçümleri oda sıcaklığında 10kHz ile 1MHz aralığında yapılmıştır. Diyotların kapasitansının, artan frekans ile azalması, arayüz yük dağılımından kaynaklanmaktadır. Anlık fotoakım ölçümleri, diyotların fotoiletkenlik davranış sergilediğini gösterir.  Zn katkılı CuO filmlerin optiksel özellikleri de UV-VIS spektroskopisi ile incelenmiş ve optik enerji bant aralığı 1.89-2.15 eV aralığında bulunmuştur. Filmlerin morfolojik yüzey özellikleri atomik güç mikroskobu (AFM) ile araştırılmıştır. Filmlerin yüzey morfolojisi Zn katkısına bağlı olarak değişmiştir. Elde edilen sonuçlar, Al/p-Si/Zn:CuO/Al diyotlarının güneş izleme sistemlerinde fotosensör olarak kullanılabileceğini göstermiştir.

___

  • [1] Dere, A., (2018). A Novel Quaternary Chalcogenide KBiCu2S3 Based Photodiode for Solar Tracking Systems. Physica B: Condensed Matter 545, 30–33.
  • [2] Wang, S.B., Hsiao, C.H., Chang, S.J., Lam, K.T., Wen, K.H., Hung, S.C., Young, S.J., and Huang, B.R., (2011). A CuO Nanowire Infrared Photodetector. Sensors and Actuators. A 171 207– 211.
  • [3] Jiang, X.C., Herricks, T., and Xia, Y.N., (2002). CuO Nanowires can be Synthesized by Heating Copper Substrates in Air. Nano Lett. 2, 1333 1336.
  • [4] Goodarzi, M.T. and Eshghi, H., (2018). Fabrication and Characterization of CuO/ZnO:Al Photo-diode Prepared by Spray Pyrolysis Method. Materials Letters 215, 79–82.
  • [5] Junying, Z., Li, C., at all., (2009). Cu2O thin Films Deposited by Reactive Direct Current Magnetron Sputtering. Thin Solid Films 517, 5700-5704.
  • [6] Mangamma, G., Jayaraman, V., Gnanasekaran, T., and Periaswami, G., (1998). Effects of SILICA ADDITIONS on HS Sensing Properties of CuO–SnO2 SensorsSens. Actuators B, 53(3), 133-139.
  • [7] Dandeneau, C.S., Jeon, Yu-H., Shelton, C.T., Plant, T.K., Cann, D.P., Gibbons, B.J., (2009). Thin Film Chemical Sensors Based on p-CuO/n-ZnO Heterocontacts Thin Solid Films, 517-15 4448.
  • [8] Rafea, M.A. and Roushdy, N., (2009). Determination of the Optical Band Gap for Amorphous and Nanocrystalline Copper Oxide Thin Films Prepared by SILAR techniqueJournal of Physics D: Applied Physics, 42(1)015413.
  • [9] Karabat, M.F. ve Arsel, I., (2015). Al/CuO/p-Si/Al Diyot Yapısının Elektriksel Özellikleri. Batman University Journal of Life Sciences; Volume:5 Number:1.
  • [10] Gopalakrishna, D., Vijayalakshmi, K., and Ravidhas, C. (2013). Effect of Pyrolytic Temperature on the Properties of Nano-Structured CuO Optimized for Ethanol Sensing Applications, J. Mater. Sci.: Mater. Electron. 24, 1004–1011.
  • [11] Kidowaki, H., Oku, T., Akiyama, T., Jeyadevan, A.S.B., and Cuya, J., (2012). Fabrication and Characterization of CuO-based Solar Cells, J. Mater. Sci. Res. 1, 138–143.
  • [12] Dere, A., Tataroğlu, A., Al-Sehemi, A.G., Al-Ghamdi, A.A., El-Tantawy,F.F., Farooq, W.A., and Yakuphanoglu, F., (2017). A Functional Material Based Photodiode for Solar Tracking Systems. Physica B 520, 76–81.
  • [13] Steinhauer, S., Brunet, E., Maier, T., Mutinati, G.C., Köck, A., and Freudenberg, O., (2012). Gas Sensing Properties of Novel CuO Nanowire Devices, The 14th International Meeting on Chemical Sensors, 713–716.
  • [14] Gu, A., Wang G., Zhang X., and Fang B., (2010). Synthesis of CuO Nanoflower and Its Application as a H2O2 Sensor, Bull. Mater. Sci. 33, 17–20.
  • [15] Singh, I. and Bedi, R.K., (2011). Studies and Correlation Among the Structural, Electrical and Gas Response Properties of Aerosol Spray Deposited Self-assembled Nanocrystalline CuO, Appl. Surf. Sci. 257, 7592–7599.
  • [16] Morales, J., Sanchez, L., Martin, F., Ramos-Barrado, J.R., and Sanchez, M., (2004). Nanostructured CuO Thin Film Electrodes Prepared by Spray Pyrolysis: A Simple Method for Enhancing the Electrochemical Performance of CuO in Lithium Cells, Electrochim. Acta 49, 4589–4597.
  • [17] Gajendiran, J. and Rajendran, V., (2014). Synthesis and Characterization of Coupled Semiconductor Metal Oxide (ZnO/CuO) Nanocomposite, Mater. Lett. 116, 311–313.
  • [18] Shi, R., Yang, P., Zhang, S., and Dong, X., (2014). Growth of Flower-like ZnO on Polyhedron CuO Fabricated by a Facile Hydrothermal Method on Cu Substrate, Ceram. Int. 40, 3637–3646.
  • [19] Chen, K.J., Hung, F.Y., Lui, T.S., Chen, C.H., and Chang, S.P., (2013). The Influences of CuO/ZnO Ratios on the Crystallization Characteristics Electrical and Magnetic Properties of Cu?Zn1−?O Powders. Hindawi Publishing Corporation Journal of Nanoparticles, Article ID 405043.
  • [20] Nakamura, Y., Yoshioka, H., Miyayama, M., Yanagida, H., Tsurutani, T., and Nakamura, Y., (1990). Selective CO Gas Sensing Mechanism with CuO/ZnO Heterocontact, J. Electrochem. Soc. 137, 940–943.
  • [21] Saji, K.J., Populoh, S., Tiwari, A.N., and Romanyuk, Y.E., (2013). Design of p-CuO/n-ZnO Heterojunctions by rf Magnetron Sputtering, Phys. Status Solidi A, 1–6.
  • [22] Mridha, S. and Basak, D., (2006). Investigation of a p-CuO/n-ZnO Thin Film Heterojunction for H2 Gas-sensor Applications, Semicond. Sci. Technol. 21, 928–932.
  • [23] Kidowaki, H., Oku, T., and Akiyama, H., (2012). Fabrication and evaluation of CuO/ZnO heterojunction for photoelectric conversion, IJRRAS 13, 67–72.
  • [24] Yang, L., Xie, C., Zhang, G., Zhao, J., Xueli, Y., Zeng, D., and Zhang, S., (2014). Enhanced response to NO2 with CuO/ZnO Laminated Heterojunction Configuration, Sens. Actuat. B 195, 500–508.
  • [25] Vuong, N.M., Chinh, N.D., Huy, B.T., and Lee, Y., (2016). CuO Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas Sensors, Sci. Rep. 6, 26736.
  • [26] Yılmaz, M., (2017). İki Eksenli Güneş Takip Sistemlerinde Takip Verimliliğin Arttırılması. Batman University Journal of Life Sciences Volume:7, Number:1/2.
  • [27] Tauc, J., (1974). Amorphous and Liquid Semiconductors. New York: Plenum Press,
  • [28] Akkaya, A., (?). The Current–Voltage and Capacitance–Voltage Characterization of Au/Methylene Blue/GaAs Organic-Modified Schottky Diodes.
  • [29] Dagdelen, F., Serbetci, Z., Gupta, R.K., and Yakuphanoglu, F., (2012). Preparation of Nanostructured Bi-doped CdO Thin Films by Sol–gel Spin Coating Method. Materials Letters 80, 127–130.
  • [30] Karataş, Ş. and Yakuphanoğlu, F., (2012). Analysis of Electronic Parameters of Nanostructure Copper Doped Cadmium Oxide/p-silicon Heterojunction. Journal of Alloys and Compounds 537, 6–11.
  • [31] Taşçıoğlu, İ., Tataroğlu, A., Özbay, A., and Altındal, Ş., (2010). The Rolebof 60Co g ray Irradiation on the Interface States and Series Resistance in MIS Structures. Radiation Physicsand Chemistry 79, 457–461.
  • [32] Özcan, E., Keşan, G., Topaloğlu, B., Tanrıverdi Eçik, E., Dere, A., Yakuphanoğlu, F., and Çosut, B., (2018). Synthesis, Photophysical, DFT and Photodiode Properties of Subphthalocyanine–BODIPY Dyads. New Journal of Chemistry. 1-9.