# GEOMETRİK DAĞILIMDAKİ SIRA İSTATİSTİKLERİN ÖRNEK MİNİMUMUNUN MOMENT ÇIKARAN FONKSİYONU

Geometrik dağılımdaki sıra istatistiklerin örnek aralığının beklenen yapılmıştır. istatistiklerin bulunmuştur
Anahtar Kelimeler:

# MOMENT GENERATING FUNCTIONS OF SAMPLE MINIMUM OF ORDER STATISTICS FROM GEOMETRIC DISTRIBUTIONS

More advance, it has studied the paper that finding of expected values for sample range of order statistics from the geometric distribution. In this paper, for sample minimum of order statistics from geometric distributions, moment generating function is obtained.
Keywords:

## Order Statistics, Moment Generating Functions, Geometric Distribution Distribution Function, Sample Extremes.,

#### ___

• • Abdel-ATY, S.H., (1954). Ordered variables in discontinuous distributions. Stat. Neerlandica 8, 61-82.
• • Arnold, B.C., Balakrishnan, N. and Nagaraja, H.N., (1992). A First Course in Order Statistics. John Wiley and Sons, New York.
• • Balakrihnan, N. and RAO, C.R., (1998). Handbook of statistics 16-Order Statistics: Theory and Methods, Elsevier, New York.
• • David, H.A., (1981). Order Statistics, Second Edition. John Wiley and Sons, New York.
• • Ferguson, T.S., (1967). On characterizing distributions by properties of order statistics. Sankhyd..A. 29, 265-278.
• • Galambos, J., (1975). Characterizations of probability distributions by properties of order statistics. In: G.P. Patil, S. Kotz and G.K. Ord, cds., Statistical distributions in scientific work, Characterization and Applications, Dordrect, 2, 289-101.
• • Margolin, B.H. and Winokur, H.S.,(1967).Exact Moments of the Order Statistics of the Geometric Distribution and Their Relation to Inverse Sampling and reliability of redundant systems. J. Amer. Statist. Ass. 62, 915-925.
• • Srivastava, R.C., (1974). Two characterizations of the geometric distribution. J. Amer. Statist. Assoc. 69, 267-269.
• Başlangıç: 2009
• Yayıncı: E-Journal of New World Sciences Academy