Yüksek sıcaklığa maruz atık çelik lif takviyeli alkali ile aktive edilmiş yüksek fırın cüruflu harçların davranışı

Bu çalışmada, yüksek sıcaklığa maruz atık çelik lif takviyeli alkali ile aktive edilmiş yüksek fırın cüruflu harçların davranışı araştırılmıştır. Bu amaçla, yüksek fırın cürufu sodyum silikat (Na2SiO3) ve sodyum hidroksit (NaOH) ile aktive edilerek harç karışımları oluşturulmuştur. Atık lif içermeyen karışımlar ile birlikte hacimce %1 ve %2 atık lif içeren karışımlar üretilmiş ve atık lif içeriğinin alkali ile aktive edilmiş harçların mekanik özelliklerine etkileri araştırılmıştır. Harç karışımlarından alınan 4x4x16 cm boyutlarındaki prizma harç numuneleri 200 ºC, 400 ºC ve 600 ºC olmak üzere üç farklı derecede yüksek sıcaklık etkisine maruz bırakılmış ve harçların birim hacim ağırlıklarında, ultrases geçiş hızlarında, eğilme ve basınç dayanımlarında meydana gelen değişimler deneysel olarak belirlenmiştir. Deney sonuçları, atık çelik liflerin alkali ile aktive edilmiş yüksek fırın cüruflu harçların mekanik özelliklerini geliştirdiğini göstermiştir. Ayrıca, 200 ºC ve 400 ºC sıcaklıklara maruz bırakılan alkali ile aktive edilmiş harçların eğilme ve basınç dayanımları değişen oranlarda artmıştır.

___

  • [1] Andrew RM, “Global CO2 emissions from cement production”. Earth System Science Data, 10(1), 195, 2018.
  • [2] Kermeli K, Edelenbosch OY, Crijns-Graus W, van Ruijven BJ, Mima S, van Vuuren DP, Worrell E. “The scope for better industry representation in long-term energy models: Modeling the cement industry”. Applied Energy, 240, 964-985, 2019.
  • [3] Duxson P, Provis JL, Lukey GC, Van Deventer JS. “The role of inorganic polymer technology in the development of ‘green concrete’”. Cement and Concrete Research, 37(12), 1590-1597, 2007.
  • [4] Hossain MM, Karim MR, Hossain MK, Islam MN, Zain MFM. “Durability of mortar and concrete containing alkali-activated binder with pozzolans: a review”. Construction and Building Materials, 93, 95-109, 2015.
  • [5] Buchwald A, Kaps C, Hohmann M. “Alkali-activated binders and pozzolan cement binders-complete binder reaction or two sides of the same story”. ICCC 2003 11th International Congress on the Chemistry of Cement, Durban, South Africa, 11-16 May, 2003.
  • [6] Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes. London, United Kingdom, CRC Press, 2003.
  • [7] Wagh AS. “Chemically bonded phosphate ceramics-a novel class of geopolymers”. 106th Annual Meeting of the American Ceramic Society, Indianapolis, Indiana, USA, 18-21 April, 2004.
  • [8] Swamy RN. Concrete Technology and Design. Surrey, United Kingdom, Surrey University Press, 1986.
  • [9] British Standards Institution. “Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements”. United Kingdom, 2000.
  • [10] Roy DM. “Alkali-activated cements opportunities and challenges”. Cement and Concrete Research, 29(2), 249-254, 1999.
  • [11] Rashad, AM. “A comprehensive overview about the influence of different additives on the properties of alkali-activated slag-a guide for Civil Engineer”. Construction and Building Materials, 47, 29-55, 2013.
  • [12] Atiş CD, Bilim C, Çelik Ö, Karahan O. “Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar”. Construction and Building Materials, 23(1), 548-555, 2009.
  • [13] Aydın S, Baradan B. “Effect of activator type and content on properties of alkali-activated slag mortars”. Composites Part B: Engineering, 57, 166-172, 2014.
  • [14] Bilim C, Karahan O, Atiş CD, İlkentapar S. “Effects of chemical admixtures and curing conditions on some properties of alkali-activated cementless slag mixtures”. KSCE Journal of Civil Engineering, 19(3), 733-741, 2015.
  • [15] Nedeljković M, Ghiassi B, van der Laan S, Li Z, Ye G. “Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes”. Cement and Concrete Research, 116, 146-158, 2019.
  • [16] Çelikten S, Sarıdemir M, Deneme İÖ. “Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature”. Construction and Building Materials, 217, 50-61, 2019.
  • [17] Behfarnia K, Shahbaz M. “The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete”. Journal of Building Engineering, 20, 442-454, 2018.
  • [18] Khaliq W, Anis Khan H. “High temperature material properties of calcium aluminate cement concrete”, Construction and Building Materials, 94, 475-487, 2015.
  • [19] Rao VV, Parameshwaran R, Ram VV. “PCM-mortar based construction materials for energy efficient buildings: A review on research trends”. Energy and Buildings, 158, 95-122, 2018.
  • [20] Cree D, Green M, Noumowé A. “Residual strength of concrete containing recycled materials after exposure to fire: a review”. Construction and Building Materials, 45, 208-223, 2013.
  • [21] Ma Q, Guo R, Zhao Z, Lin Z, He K. “Mechanical properties of concrete at high temperature-A review”. Construction and Building Materials, 93, 371-383, 2015.
  • [22] Loloie Z, Mozaffarian M, Soleimani M, Asassian N. “Carbonization and CO2 activation of scrap tires: Optimization of specific surface area by the Taguchi method”. Korean Journal of Chemical Engineering, 34(2), 366-375, 2017.
  • [23] Thomas BS, Gupta RC. “A comprehensive review on the applications of waste tire rubber in cement concrete”. Renewable and Sustainable Energy Reviews, 54, 1323-1333, 2016.
  • [24] Dehghani M, Keshtgar L, Javaheri MR, Derakhshan Z, Oliveri Conti G, Zuccarello P, Ferrante M. “The effects of air pollutants on the mortality rate of lung cancer and leukemia”. Molecular Medicine Reports, 15(5), 3390-3397, 2017.
  • [25] Wang C, Tian X, Zhao B, Zhu L, Li S. “Experimental study on spent FCC catalysts for the catalytic cracking process of waste tires”. Processes, 7(6), 335, 2019.
  • [26] Pipilikaki P, Katsioti M, Papageorgiou D, Fragoulis D, Chaniotakis E. “Use of tire derived fuel in clinker burning”. Cement and Concrete Composites, 27(7-8), 843-847, 2005.
  • [27] Gonen T. “Freezing-thawing and impact resistance of concretes containing waste crumb rubbers”. Construction and Building Materials, 177, 436-442, 2018.
  • [28] Farina A, Zanetti MC, Santagata E, Blengini GA. “Life cycle assessment applied to bituminous mixtures containing waste materials: Crumb rubber and reclaimed asphalt pavement”. Resources, Conservation and Recycling, 117, 204-212, 2017.
  • [29] Mendis AS, Al-Deen S, Ashraf M. “Effect of rubber particles on the flexural behaviour of reinforced crumbed rubber concrete beams”. Construction and Building Materials, 154, 644-657, 2017.
  • [30] Olivares FH, Barluenga G, Bollati M, Witoszek B. “Static and dynamic behaviour of waste tyre rubber-filled concrete”. Cement and Concrete Research, 32(10), 1587-1596, 2002.
  • [31] Huang B, Li G, Pang SS, Eggers J. “Investigation into waste tire rubber-filled concrete”. Journal of Materials in Civil Engineering, 16(3), 187-194, 2004.
  • [32] Hesami S, Hikouei IS, Emadi SAA. “Mechanical behavior of self-compacting concrete pavements incorporating waste tire rubber crumb and reinforced with polypropylene fiber”. Journal of cleaner production, 133, 228-234, 2016.
  • [33] Onuaguluchi O, Borges PH, Bhutta A, Banthia N. “Performance of scrap tire steel fibers in OPC and alkali-activated mortars”. Materials and Structures, 2017. https://doi.org/10.1617/s11527-017-1026-6.
  • [34] Samarakoon SSM, Ruben P, Pedersen JW, Evangelista L. “Mechanical performance of concrete made of steel fibers from tire waste”. Case Studies in Construction Materials, 2019. https://doi.org/10.1016/j.cscm.2019.
  • [35] Türk Standartları Enstitüsü. “Öğütülmüş Yüksek Fırın Curufu-Beton, Harç ve Şerbette Kullanım için-Bölüm 1: Tarifler, Özellikler ve Uygunluk Kriterleri”. Ankara, Türkiye, 2016.
  • [36] Türk Standartları Enstitüsü. “Çimento deney metotları- Bölüm 1: Dayanım tayini”. Ankara, Türkiye, 2016.
  • [37] Karabörk F, Akdemir A. “Atık taşit lastiklerinin parçalanmasi ve lastik tozunun karakterizasyonu”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 29(1), 29-40, 2013.
  • [38] Türk Standartları Enstitüsü. “Kagir Harci-Deney Metotlari- Bölüm 3: Taze Harç Kıvamının Tayini (yayılma tablası ile)”. Ankara, Türkiye, 2016.
  • [39] ASTM International. “Standard Test Method for Pulse Velocity Through Concrete”. West Conshohocken, USA, 2009.
  • [40] Demirboğa R, Türkmen İ, Karakoc MB. “Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete”. Cement and Concrete Research, 34(12), 2329-2336, 2004.
  • [41] Turgut P. “Research into the correlation between concrete strength and UPV values”. NDT. net, 12(12), 1-9. 2004
  • [42] Motorwala A, Shah V, Kammula R, Nannapaneni P, Raijiwala DB. “ALKALI activated FLY-ASH based geopolymer concrete”. International Journal of Emerging Technology and Advanced Engineering, 3(1), 159-166. 2013.
  • [43] Duxson P, Lukey GC, van Deventer JS. “Physical evolution of Na-geopolymer derived from metakaolin up to 1000 C”. Journal of Materials Science, 42(9), 3044-3054. 2007.
  • [44] Huajun Z, Xıao Y. “Effect of retarder on reaction process of metakaolin-slag-based geopolymer”. Journal of Theoretical and Applied Information Technology, 48(3), 1384-1390, 2013.
  • [45] Mobili A, Belli A, Giosuè C, Bellezze T, Tittarelli F. “Metakaolin and fly ash alkali-activated mortars compared with cementitious mortars at the same strength class”. Cement and Concrete Research, 88, 198-210, 2016.
  • [46] Wang SD, Scrivener KL, Pratt PL. “Factors affecting the strength of alkali-activated slag”. Cement and concrete research, 24(6), 1033-1043, 1994.
  • [47] Posi P, Teerachanwit C, Tanutong, C, Limkamoltip S, Lertnimoolchai S, Sata, V, Chindaprasirt P. “Lightweight geopolymer concrete containing aggregate from recycle lightweight block”. Materials and Design, 1980-2015(52), 580-586, 2013.
  • [48] Ahmadi M, Farzin S, Hassani A, Motamedi M. “Mechanical properties of the concrete containing waste fibers and aggregates”. Construction and Building Materials, 144, 392-398, 2017.
  • [49] Rashad AM, Bai Y, Basheer PAM, Collier NC, Milestone NB. “Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature”. Cement and Concrete Research, 42(2), 333-343, 2012.