Ultrasonik kayma dalgaları tomografisi ile beton kusurlarının incelenmesinde frekansın etkisi

Ultrasonik Kayma Dalgaları Tomografisi (UKDT) yapıdaki nesneleri, ara yüzleri ve anomalileri tespit etmek için ultrasonik kayma dalgaları kullanan modern bir tahribatsız yöntemi olarak önerilmektedir. Bu yöntem sayesinde yapının tamamının hızlı ve ekonomik bir şekilde hiçbir elemana zarar vermeden incelenebilmesine olanak tanınmaktadır. Bu şekilde yapı elemanlarında kayma dalgalarının ultrasonik geçiş özellikleri üç boyutlu olarak görselleştirilebilmektedir. Bu çalışmada betonun UKDT ile incelenmesinde frekansın etkisi üzerine yapılan deneysel çalışma sonucunda elde edilen bulgular sunulmuştur. Deneysel çalışmalarda kullanılan cihazda 24 adet transdüser bulunur ve cihazın çalışma frekans aralığı 25-250 kHz’dir. Deneyler için laboratuvarda 50x50x22 cm boyutlarında üç adet beton numune üretilmiştir. Donatı ve kusurları temsil etmesi amacıyla beton numunelerin içerisine farklı malzemeler yerleştirilmiştir. Her bir numune üzerinde dört farklı frekans değerinde (25-50-100-200 kHz) deneyler yapılmıştır. Deneyler sonucunda her bir frekans değerinde elde edilen tomografik kesitler ile numuneler içerisine yerleştirilen, tip, ebat ve yerleşimleri bilinen donatı ve kusurlar eşleştirilmeye çalışılmıştır. Bu çalışmada elde edilen sonuçlara göre, uygulanan beton malzemelerde UKDT yöntemi ile yapılacak olan deneylerde, aranan kusurun özelliklerine göre, uygulanan frekans değerinin sonucun doğruluğuna etkisinin değiştiği sonucuna varılmıştır. 25 kHz ve 50 kHz frekanslarında yapılan deneylerde numunelerin içerisine yerleştirilen malzeme boyutlarının belirlenmesi gerçeğe yakın doğrulukla yapılabilmekteyken 100 kHz ve 200 kHz değerleri ise sadece numune boyutlarının yani beton elemanın sınırlarının belirlenmesi için yeterli olabilmiştir.

Effect of frequency on the evaluation of the concrete defects by ultrasonic shear wave tomography

Ultrasonic Shear Wave Tomography (USWT) is recommended as a modern non-destructive method that uses ultrasonic shear waves to detect objects, interfaces, and anomalies in the structure. The entire structure can be analyzed quickly and economically without destruction of any structural element. Thus, ultrasonic transition properties can be visualized in three dimensions by means of this method. In this work, results of experimental studies conducted on the effect of frequency on the analysis of the concrete by USWT are explained. The test device used in experimental studies has 24 transducers and its operating frequency range is 25-250 kHz. 50x50x22 cm sized three concrete specimens were produced in the laboratory for the experiments. Different materials were embedded in the concrete specimens to represent reinforcement and defects. Experiments were carried out at four different frequency values (25-50-100-200 kHz) on each specimen. The tomographic crosssections obtained at each frequency value were studied. The reinforcement and defects obtained in tomography sections were tried to match the known properties of placed objects in the concrete specimens. According to the results obtained in this study the accuracy of the results obtained depending on the frequency value varies according to the characteristics of the defect. The materials placed in the specimens tested at 25 kHz and 50 kHz values were determined with high accuracy whereas the values of 100 kHz and 200 kHz were only satisfactory to determine the specimen sizes, in other words, the boundaries of the concrete element.

___

  • [1] Tayfur S, Alver N. “Imaging of voids in concrete by impactecho and ultrasonic-echo methods’’. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 167-176, 2018.
  • [2] Yüksel İ. “Bileşik Yıkıntısız yöntemle yerinde beton dayanımının tahmini”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 231-235, 2003.
  • [3] Schabowicz, K. “Modern acoustic techniques for testing concrete structures accessible from one side only”. Archives of Civil and Mechanical Engineering, 15(4), 1149-1159, 2015.
  • [4] Schabowicz K, Suvorov VA. “Nondestructive testing of a bottom surface and construction of its profile by ultrasonic tomography”. Russian Journal of Nondestructive Testing, 50(2), 109-119, 2014.
  • [5] De La Haza AO, Petersen CG, Samokrutov A. “Three dimensional imaging of concrete structures using ultrasonic shear waves”. Structural Faults & Repair -2008: 12th International Conference and Exhibition, Edinburgh, Scotland, 10-12 June 2008.
  • [6] Chai HK, Aggelis DG, Momoki S, Kobayashi Y, Shiotani T. “Single-side access tomography for evaluating interior defect of concrete”. Construction and Building Materials, 24(12), 2411-2418, 2010.
  • [7] Lybaert M. “Ultrasonic tomography, a non-destructive measuring technique for analysis of concrete roads”. Young Researchers Seminar 2015, Rome, Italy, 17-19 June 2015.
  • [8] National Academies of Sciences, Engineering, and Medicine. “Nondestructive Testing to Identify Concrete Bridge Deck Deterioration”. Washington, DC, USA, 2013.
  • [9] Choi P, Kim DH, Lee BH, Won MC. “Application of ultrasonic shear-wave tomography to identify horizontal crack or delamination in concrete pavement and bridge”. Construction and Building Materials, 121, 81-91, 2016.
  • [10] Dawood N, Marzouk H, Hussein A, Gillis N. “Nondestructive assessment of a jetty bridge structure using impact-echo and shear-wave techniques”. Journal of Bridge Engineering, 18(8), 801-809, 2013.
  • [11] Schabowicz K. “Ultrasonic tomography–the latest nondestructive technique for testing concrete members – Description, test methodology, application example”. Archives of Civil and Mechanical Engineering, 14(2), 295-303, 2014.
  • [12] Choi H, Ham Y, Popovics JS. “Integrated visualization for reinforced concrete using ultrasonic tomography and image-based 3-D reconstruction”. Construction and Building Materials, 123, 384-393, 2016.
  • [13] Smokotin A, Bogatyreva M, Protasova I. “The quality evaluation of concrete structures with the ultrasonic lowfrequency tomograph”. Journal of Physics: Conference Series, 671(1), 1-5, 2016.
  • [14] Nguyen TD, Tran KT, Gucunski N. “Detection of bridgedeck delamination using full ultrasonic waveform tomography”. Journal of Infrastructure Systems, 23(2), 1-9, 2017.
  • [15] Lin S, Shams S, Choi H, Azari H. “Ultrasonic imaging of multi-layer concrete structures”. NDT and E International, 98, 101-109, 2018.
  • [16] Freeseman K, Khazanovich L, Hoegh K, Nojavan A, Schultz AE, Chao SH. “Nondestructive monitoring of subsurface damage progression in concrete columns damaged by earthquake loading”. Engineering Structures, 114, 148-157, 2016.
  • [17] Lipa, L., Navarro, L. M., ve Pasquel, E. N., Influence of steel bars in detection of voids in concrete using ultrasonic pulse-echo method, ACI Materials Journal, 116 (4), 223-234, 2019.
  • [18] Salvador Villalobos PE, Stark R, Fisk P. “Ultrasonic measurements for condition assessment of prestressed concrete cylinder pipe”. Pipelines 2019, Nashville, Tennessee, USA, 24 July 2019.
  • [19] Pekmezci BY, Şeker DZ, Tavlı E, Yorulmaz B, Arabacı E, Güler F, Gökpınar M. “Ultrasonik kayma dalgaları tomografisi ile betonda kusur tespiti”. Beton 2017 Kongresi, İstanbul, Türkiye, 3-14 Nisan 2017.
  • [20] Tavlı E. Ultrasonik Tomografi ve Ultrases Geçiş Hızı Yöntemiyle Betonda Kusur Tespiti. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2017.
  • [21] Peker MA. Betonun Ultrasonik Tomografi Yöntemi ile İncelenmesinde Frekansın Etkisi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2019.
  • [22] Scott DB. “Internal inspection of reinforced concrete for nuclear structures using shear wave tomography” Energy Conversion and Management, 74, 582-586, 2013.
  • [23] Li Z. “A study on ultrasonic echo tomography for non destructive evaluation of hardened cementitious concrete”. Journal of Building Pathology and Rehabilitation, 5(13), 1-18, 2020.
  • [24] Kwon H, Joh C, Chin WJ. “Pulse peak delay-total focusing method for ultrasonic tomography on concrete structure”. Applied Sciences, 11(1741), 1-12, 2021.
  • [25] Wimsatt A, White J, Leung C, Scullion T, Hurlebaus S, Zollinger D, Grasley Z, Nazarian S, Azari H, Yuan D, Shokouhi P, Saarenketo T, Tonon F. “Mapping Voids, Debonding, Delaminations, Moisture, and Other Defects Behind or Within Tunnel Linings”. Transportation Research Board, Washington DC, USA, Scientific Report, R06, 2014.
  • [26] Srinivasan P. Condition Assessment and Evaluation of Concrete Structures by Advanced Non-Destructive Methods. PhD Thesis, Annamalai University, Tamil Nadu, India, 2013.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ