TIG kaynak parametrelerinin AISI 316L paslanmaz çeliğinin mikro yapı ve mekanik özelliklerine etkisi

Bu çalışmada yüksek korozyon direnci nedeni ile nükleer güç santrallerinde yaygın bir şekilde kullanılan AISI 316L östenitik paslanmaz çelik, TIG kaynak yöntemi ile farklı kaynak akımlarında ve kaynak hızlarında, ilave tel kullanılmadan birleştirilmiştir. Daha sonra üretilen kaynaklı birleştirmelerin ısı girdileri hesaplanarak, numunelere makro ve mikroyapı çalışmaları, sertlik, çekme ve eğme testleri uygulanmıştır. Mikroyapı çalışmaları sonucunda kaynak metalinin östenit+çatısal ferrit ya da delta ferritten oluşan bir mikroyapıya sahip olduğu görülmüştür. Sertlik deneyleri sonucunda kaynak akımının artması ile sertliğin düştüğü gözlenirken kaynak hızının artması ile de sertliğin yükseldiği belirlenmiştir. Çekme deneyleri sonuçları ise sertlik ölçümleri ile benzerlik göstererek kaynak akımının artması ile çekme dayanımı düşerken kaynak hızının artması ile çekme dayanımı artmıştır. Yapılan 1800 eğme testlerinde ise ne kep eğmelerinde ne de kök eğmelerinde herhangi bir yırtılma ya da çatlamaya rastlanmamıştır.

The effects of TIG welding parameters on the microstructure and mechanical properties of AISI 316L stainless steel

In this study, AISI 316L austenitic stainless steel, which is widely used in nuclear power plants due to its high corrosion resistance, is joined by TIG welding method at different welding currents and welding speeds without using additional wire. Then, the heat inputs of the produced welded joints were calculated and macro and microstructure studies, hardness, tensile and bending tests were applied to the samples. As a result of the microstructure studies, it has been observed that the weld metal has a microstructure consisting of austenite + Skeletal ferrite or delta ferrite. As a result of the hardness tests, it was observed that the hardness decreased with the increase of the welding current, and the hardness increased with the increase of the welding speed. As a result of the tensile tests, similar to the hardness measurements, the tensile strength decreased with the increase of the welding current, while the tensile strength increased with the increase in the welding speed. No tearing or cracking was observed in either the cap twists or the root bends in the 1800 bending tests.

___

  • [1] Moteshakker A, Danaee I, Moeinifar S, Ashrafi A. “Hardness and tensile properties of dissimilar welds joints between SAF 2205 and AISI 316L”. Science and Technology of Welding and Joining, 21(1), 1-10, 2016.
  • [2] Hussien AM, El-Shabasy AB, Abd El-Ghany KM. “Evaluation of stainless steel 316L joints welded by laser”. Journal Of Al-Azhar University Engineering Sector, 14(50), 229-236, 2019.
  • [3] Subhas CM, Pradip KP, Asish B. “Design optimization of TIG welding process for AISI 316L stainless steel”. International Journal of Recent Technology and Engineering, 8(2), 5348-5354, 2019.
  • [4] Kumar M, Punia A. “Investigation on dissimilar metal welding of stainless steel 316L and dild steel A-2062 using GTAW”. International Research Journal of Engineering and Technology, 6(8), 286-292, 2019.
  • [5] Luis HG, Carlos ADR, Sebastião EK, Marcelo F, de O. “Corrosion behaviour of a dissimilar joint TIG weld between austenitic AISI 316L and ferritic AISI 444 stainless steels“. Welding International, 30(4), 268-276, 2016.
  • [6] Hedayat MS, Morteza T. “Comparative study of AISI 304L to AISI 316L stainless steels joints by TIG and Nd:YAG laser welding”. Journal of Alloys and Compounds, 767, 112-121, 2018.
  • [7] Kocabekir B, Kacar R, Gündüz S, Hayat F. “An effect of heat input, weld atmosphere and weld cooling conditions on the resistance spot weldability of 316L austenitic stainless steel”. Journal o f Materials Processing Technology, 195, 327-335, 2008.
  • [8] Merıch C, Karabash O, Babayev Y, Demirkiran K. “An investigation of the weld region of AISI 304, AISI 316L and AISI 431 stainless steels joined by GTAW”. Journal of Qafqaz Unıversity-Mechanical And Industrıal Engineerıng, 1(1), 73-81, 2013.
  • [9] Çınar Ö, Yaralı MC, Erdemir E, Çetiner BN, Mergen A, Güllüoğlu AN. “The similar and dissimilar TIG welding of 316L and 321 austenitic stainless steels”. ALKU Journal of Science, 1(3), 148-155, 2019.
  • [10] Bolarinwa JK, Saliu OS, Godwin IE, Ayotunde II. “Review of GTAW welding parameters”. Journal of Minerals and Materials Characterization and Engineering, 6, 541-554, 2018.
  • [11] Sathish T, Dinesh Kumar S, Muthukumar K, Karthick S. “Natural inspiration technique for the parameter optimization of A-GTAW welding of naval steel”. Materials Today: Proceedings, 21, 843-846, 2020.
  • [12] Priya C, Hemant P. “A review on activated gas tungsten arc welding (A-GTAW)”. International Journal of Scientific Development and Research, 1(5), 798-803, 2016.
  • [13] Malhotra D, Shahi AS, Gupta K. “Effect of GTAW remelting on the corrosion performance of AISI 316L cladding”. Materials and Corrosion, 72, 141-153, 2021.
  • [14] Abhirav M, Md Areeb M, Sricharan SS, Chandra SK. “Gas Tungsten Arc Welding of AISI 304 Austenitic Stainless Steels”. International Journal of Engineering Research & Technology, 4(12), 148-150, 2015.
  • [15] Elmesalamy A, Francis JA, Li L. “A comparison of residual stresses in multi pass narrow gap laser welds and gastungsten arc welds in AISI 316L stainless steel”. International Journal of Pressure Vessels and Piping, 113, 49-59, 2014.
  • [16] Paulraj P, Garg R. “Effect of welding parameters on mechanical properties of GTAW of UNS S31803 and UNS S32750 weldments”. Manufacturing Review, 2(29), 2-9, 2015.
  • [17] Kahraman N, Durgutlu A, Gülenç B. “316L paslanmaz çeliğin TIG kaynağında koruyucu argon gazına hidrojen ilavesinin kaynak bölgesi tane morfolojisine etkilerinin araştırılması”. Journal of Polytechnic, 7(3), 223-228, 2004.
  • [18] Demarque R, dos Santos EP, Silva RS, de Castro JA. “Evaluation of the effect of the thermal cycle on the characteristics of welded joints through the variation of the heat input of the austhenitic AISI 316L steels by the GMAW process”. Science and Technology of Materials, 30, 51-59, 2018.
  • [19] Barrios AM, Burgos LM, Niebles-Nuñez EE, Espitia L A, Unfried-Silgado J. “Influence of immersion corrosion on mechanical properties of AISI 430/AISI 316L dissimilar welded joints”. Ije Transactions B: Applications, 34(5), 1352-1361, 2021.
  • [20] Ragavendran M, Vasudevan M. “Effect of laser and hybrid laser welding processes on the residual stresses and distortion in AISI Type 316L(N) stainless steel weld joints”. Metallurgical And Materials Transactions B, 52, 2582-2603, 2021.
  • [21] Saha D, Pal S. “Microstructure and work hardening behavior of micro-plasma arc welded AISI 316L sheet joint”. Journal of Materials Engineering and Performance, 28(5), 2588-2599, 2019.
  • [22] Türkan M, Karakaş Ö. “The influence of corrosion on the mechanical behavior of AISI 316L stainless steel welds”. Mechanika, 25(2), 114-118, 2019.
  • [23] Yılmaz R, Barlas Z. “Paslanmaz çeliklerin gazaltı kaynak yöntemi ile birleştirilmesinde koruyucu gaz kompozisyonunun mikroyapı ve mekanik özelliklere etkisi”. Pamukkale Universitesi, Mühendislik Bilimleri Dergisi, 11(3), 391-400, 2005.
  • [24] Gokul KK, Devendranath RK, Arivazhagan N. “Characterization of metallurgical and mechanical properties on the multi-pass welding of Inconel 625 and AISI 316L”. Journal of Mechanical Science and Technology, 29(3), 1039-1047, 2015.
  • [25] Yueqiao F, Zhen L, Zuming L, Yang L, Yucan L, Yongxian H. “Keyhole gas tungsten arc welding of AISI 316L stainless steel”. Materials and Design, 85, 24-31, 2015.
  • [26] Köse C, Kaçar R, Zorba AP, Bağırova M, Allahverdiyev AM. “The effect of CO2 laser beam welded AISI 316L austenitic stainless steel on the viability of fibroblast cells, in vitro”. Materials Science and Engineering C, 60, 211-218, 2016.
  • [27] Kianersi D, Mostafaei A, Amadeh AA. “Resistance spot welding joints of AISI 316L austenitic stainless steel sheets: phase transformations, mechanical properties and microstructure characterizations”. Materials and Design, 61, 251-263, 2014.
  • [28] Abdeljlil CH, Kamel T, Rachid D, Abousoufiane O, Hussein A, Mohamed MZA. “Mechanical properties and microstructure of TIG and ATIG Welded 316L austenitic stainless steel with multi-components flux optimization using mixing design method and particle swarm optimization (PSO)”. Materials, 14(23), 2-17, 2021.
  • [29] Liu K, Li Y, Wang J. “Microstructure and low-temperature mechanical properties of 304 stainless steel joints by PAW+GTAW combined welding”. Journal of Materials Engineering and Performance, 25(10), 4561-4561, 2016.
  • [30] Kahraman H, Güvenç MA, Mıstıkoğlu S. “AISI 304 östenitik paslanmaz çelik levhaların TIG kaynağı ile birleştirilmesinde farklı koruyucu gaz tiplerinin mekanik özelliklerine etkisi”. Journal of Materials and Mechatronics: A, 2(1), 1-12, 2021.
  • [31] Sufizadeh AR, Akbari Mousavi SAA. “Investigation of Nd:YAG pulsed laser dissimilar welding of AISI 4340 and AISI 316L stainless steels on weld geometry and mechanical properties”. Mechanics & Industry, 2017. https://doi.org/10.1051/meca/2016079.
  • [32] Cao L, Shao X, Jiang P, Zhou Q, Rong Y, Geng S, Mi G. “Effects of welding speed on microstructure and mechanical property of fiber laser welded dissimilar butt joints between AISI 316L and EH36”. Metals, 7(270), 2-13, 2017.
  • [33] Kar J, Roy SK, Roy GG. “Effect of beam oscillation on microstructure and mechanical properties of AISI 316L electron beam welds”. Metallurgical And Materials Transactions A, 48, 1759-1770, 2017.
  • [34] Kumar P, Sinha AN, Hirwani CK, Murugan M, Saravanan A, Singh AK. “Effect of welding current in TIG welding 304L steel on temperature distribution, microstructure and mechanical properties”. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(7), 2-20, 2021.
  • [35] Moi SC, Pal PK, Bandyopadhyay A, Rudrapati R. “Effect of heat input on the mechanical and metallurgical characteristics of TIG welded joints”. Journal of Mechanical Engineering, 16(2), 29-40, 2019.
  • [36] Okonji PO, Nnuka EE, Odo JU. “Effect of welding current and filler metal types on macrostructure and tensile strength of GTAW welded stainless steel joints”. International Journal of Scientific Research and Engineering Trends, 1(1), 9-12, 2015.
  • [37] Chuaiphana W, Srijaroenpramongb L. “Optimization of TIG welding parameter in dissimilar joints of low nickel stainless steel AISI 205 and AISI 216”. Journal of Manufacturing Processes, 58, 163-178, 2020.
  • [38] Dinesh KR, Elangovan S, Siva SN. “Parametric optimisation of pulsed - TIG welding process in butt joining of 304L austenitic stainless steel sheets”. International Journal of Research in Engineering and Technology, 3(11), 213-219, 2014.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ