Taguchi metodu kullanılarak mürekkep püskürtülmesinin optimizasyon analizi

Mürekkep püskürtmeli yazıcılar, yüksek çözünürlüğü kabul edilebilir bir hızla birleştirmek ve düşük maliyet ile çıktı almak için etkili araçlardır. Bu çalışmada, iki fazlı akışda mürekkep püskürtmeli damlacıkların ağırlık değişimini araştırmak için sıkıştırılamaz NavierStokes denklemleri kullanıldı. Mürekkep rengi için siyah, kırmızı ve mavi, kanal giriş yarıçapı için 0.02, 0.03 ve 0.04 mm ve giriş hızı için 0.2, 0.4 ve 0.6 m/s alınmıştır. Taguchi analizi yapılmış ve mürekkep ağırlığı üzerinde en etkili parametrenin giriş hızı olduğu görülmüştür. Ağırlık maksimizasyonu için optimum koşulların siyah renk, 0.02 mm kanal yarıçapı ve 0.6 m/s giriş hızı olduğu belirlenmiştir. Optimum koşullar belirlendikten sonra farklı renkli mürekkeplerdeki değişimi tespit etmek için Comsol programı ile sayısal olarak damlacık akış analizi incelenmiştir. Daha yüksek yoğunluk ve viskoziteye sahip mürekkepler için damlacık sıvı miktarının daha fazla olduğu ve hedef alana ulaşma süresinin daha kısa olduğu görülmüştür.

Optimization analysis of the inkjet using the Taguchi method

Inkjet printers are effective tools for combining high resolution with acceptable velocity and low cost output. In this study, the incompressible Navier-Stokes equations were used to investigate the weight change of the inkjet droplets for the two-phase flow. For the ink color black, red and blue, for the nozzle inlet radius 0.02, 0.03 and 0.04mm, and for the inlet velocity 0.2, 0.4 and 0.6 m/s were taken. Taguchi analysis was performed, and it was seen that the most effective parameter on ink weight was the inlet velocity. It has been determined that the optimum conditions for weight maximization are black color, 0.02mm nozzle radius and 0.6 m/s inlet velocity. After determining the optimum conditions, droplet flow analysis was numerically carried out with the Comsol program to detect the change in different colored inks. It showed that the droplet fluid amount was greater and the time it took to reach the target area was shorter for inks with higher density and viscosity.

___

  • [1] Yeh JT. “A VOF-FEM Coupled inkjet simulation“. Proceedings of ASME FEDSM’01, New Orleans, Louisiana, 29 May–1 June 2001.
  • [2] Riemer DE. “The direct emulsion screen as a tool for high resolution thick film printing“. Electronic Component Conference Proceedings, Washington, DC, USA, 10-12 May 1971.
  • [3] Riemer DE. Ein Beitrag Zur Untersuchung Der Physikalisch Technischen Grundlagen Des Siebdruckverfahrens. PhD Thesis, Technische Universitat Berlin, Germany, 1988.
  • [4] Potts SJ. Phillips C, Jewell E, Clifford B, Lau YC, Claypole T. “High-speed imaging the effect of snap-off distance and squeegee speed on the ink transfer mechanism of screenprinted carbon pastes”. Journal of Coatings Technology and Research, 17(2), 447-459, 2020.
  • [5] Messerschmitt E. “Rheological considerations for screen printing inks”. Screen Print, 72(10), 62-65, 1982.
  • [6] Xu C, Willenbacher N. “How rheological properties affect fine-line screen printing of pastes: A combined rheological and high-speed video imaging study”. Journal of Coatings Technology and Research, 15(6), 1401-1412, 2018.
  • [7] Yang Y, Liub F. “Study on the relationships between offset ink tack value and its viscosity, the separation velocity”. Advanced Materials Research, 332-334, 1704-1708, 2011.
  • [8] Kapur N, Abbott SJ, Dolden ED, Gaskel PH. “Predicting the behavior of screen printing”. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 3(3), 508-515, 2013.
  • [9] Riemer DE. “The theoretical fundamentals of the screen printing process”. Microelectronics International, 6(1), 8-17, 1989.
  • [10] Yu JD, Sakai S, Sethian JA. “A coupled level set projection method applied to ink jet simulation“. Interfaces and Free Boundaries, 5(1), 459–482, 2003.
  • [11] Aleinov ID, Puckett EG, Sussman M. “Formation of droplets in microscale jetting devices“. Proceedings of ASME FEDSM’99. San Francisco, California, 18-23 July 1999.
  • [12] Sou A, Sasai K, Nakajima T. “Interface tracking simulation of ink jet formation by electrostatic force“. Proceedings of ASME FEDSM’01, New Orleans, Louisiana, 29 May-1 June 2001.
  • [13] Chorin AJ. “Numerical solution of the navier-stokes equations“. Mathematics of Computation, 22(104), 745-762,1968.
  • [14] Uner I, Gurcum BH. “Conductive ink applications on electronic textiles“. Pamukkale University Journal of Engineering Sciences, 25(7), 794-804, 2019.
  • [15] Yayla S, Ayça S, Oruç M. "A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids". Renewable Energy, Elsevier, 157(C), 1243-1253, 2020.
  • [16] Yayla S, Kamal K, Bayraktar S, Oruc M. "Two phase flow separation in a horizontal separator by inlet diverter plate in oilfield industries". International Journal of Mechanical and Production Engineering (IJMPE), 5(10), 7-10, 2017.
  • [17] Oruç M, Yayla S. “Experimental investigation of oil-in water separation using corrugated plates and optimization of separation system”. Separation Science and Technology, 57(5), 788-800, 2022.
  • [18] Taguchi G. Introduction to Quality Engineering. 1st ed. Tokyo, Japan, Asian Productivity Organization, 1990.
  • [19] Olsson E, Kreiss G. “A conservative level set method for two phase flow”. Journal of Computational Physics, 210(1), 225-246, 2005.
  • [20] Yue P, Feng J, Liu C, Shen J. “A diffuse-interface method for simulating two-phase flows of complex fluids”. Journal of Fluid Mechanics, 515(1), 293-317, 2004.
  • [21] Comsol Multiphysics 4.3. Comsol Multiphysics Reference Manual. 1st ed. Stockholm, Sweden, Comsol AB, 2012.
  • [22] Tofan T, Kruggel-Emden H, Turla V, Jasevičius R. “Numerical modeling of the motion and interaction of a droplet of an inkjet printing process with a flat surface”. Applied Sciences, 11(2), 527-541, 2021.