Mantıların kurutma karakteristiği

Mantı, Türkiye’de yıllardır birçok insan tarafından tüketilen, özgüntada sahip bir hamur işidir. Bu çalışmada, iki yaygın tipte mantı örneği(hamur tabakalarının küçük torbalar halinde sarılmasıyla üretilengeleneksel Kayseri mantısı ve üçgen mantı) mikrobiyolojik olarakgüvenli olmalarını sağlamak amacıyla su aktivitesi değerlerinin 0.6'nınaltına düşürülmesi suretiyle kurutulmuştur. Kurutma işlemi konvektifbir kurutucuda 60, 70 ve 80 °C'de gerçekleştirilmiş ve örneklerinkurutma kinetiği parametreleri Page, Henderson ve Pabis, ModifiyePage, Logaritmik ve Newton modelleri kullanılarak belirlenmiştir.Üçgen mantının kuruma özelliklerine en uygun modeller 60 ve 70 °C içinNewton modeli iken, 80 °C için en uygun modeller Page ve Modifiye Pagemodelleridir. Ayrıca, 60 °C, 70 °C ve 80 °C'de geleneksel Kayseri mantıiçin en uygun modeller sırasıyla Page/Modifiye Page, Newton vePage/Modifiye Page olarak saptanmıştır. Üçgen mantı için daha yüksekkuruma hızları saptanırken, istenen su aktivite değeri üçgen mantı için70 °C ve 80 °C, geleneksel Kayseri mantısı için ise yalnızca 80 °C kurutmasıcaklığında elde edilmiştir. Kuruma hızları sıcaklık ile artışgöstermiştir.

Drying characteristics of Turkish ravioli, mantı

Mantı is a type of ravioli with a unique taste, which has been appreciated by many people in Turkey for years. In this study, two common types of mantı samples (traditional Kayseri mantı produced by wrapping dough sheets into small bags and triangular mantı) were dried to make them microbiologically safe by lowering their water activities to a desired level of less than 0.6. Drying process was carried out in a conventional dryer at 60, 70 and 80 °C and the drying kinetics of mantı samples was determined by the Page, Henderson and Pabis, Modified Page, Logarithmic and Newton models. The best-fit model for the drying characteristics of triangular mantı was the Newton model at 60 and 70 °C while the Page and Modified Page models were the best at 80 °C. Moreover, Page/Modified Page, Newton and Page/Modified Page models were the best-fit models for traditional Kayseri mantı at 60 °C, 70 °C and 80 °C, respectively. Faster drying rates were obtained for triangular mantı, and the desired water activity value for this mantı was reached at drying temperatures of 70 °C and 80 °C, and only at 80 °C for the traditional Kayseri mantı. Drying rates increased by increasing temperature levels.

___

  • [1] Sanlier N. “Opinions of foreign and Turkish tourists on Turkish cuisine”. Gazi University Journal of Gazi Educational Faculty, 25(1), 213-227, 2005.
  • [2] Daglioglu O. Microwave Drying of Turkish Ravioli and the Effects of Microwave Drying on the Final Product. PhD Thesis, Trakya University, Tekirdağ, Turkey, 1993.
  • [3] Budak N, Sahin H, Cicek B. Kayseri Mantıları, Türk Mutfak Kültürü Üzerine Araştırmalar. Ankara, Türkiye, Türk Halk Kültürünü Araştırma ve Tanıtma Vakfı Yayınları, 2002.
  • [4] Farber JM, Dodds K. Principles of Modified-Atmosphere and Sous Vide Product Packaging. 1st ed. Pennsylvania, USA, CRC Press, 1995.
  • [5] Rodriguez V, Medina LM, Jordano R. “Incidence of mesophilic anaerobic bacteria and lactic acid bacteria on sliced bread under modified atmosphere packaging during storage”. Journal of Food Quality, 22(6), 701-710, 1999.
  • [6] Ünlütürk A, Turantaş F. Gıda Mikrobiyolojisi. Birinci baskı. Izmir, Turkey, Mengi tan Basımevi, 1999.
  • [7] Ramos IN, Silva CLM, Sereno AM, Aguilera JM. “Quantification of microstructural changes during first stage air drying of grape tissue”. Journal of Food Engineering, 62, 159-164, 2004.
  • [8] Zhang M, Tang J, Mujumdar AS, Wang S. “Trends in microwave related drying of fruits and vegetables”. Trends in Food Science & Technology, 17, 524-534, 2006.
  • [9] Ozgener L, Ozgener O. “Exergy analysis of industrial pasta drying process”. International Journal of Energy Research 30(15), 1323-1335, 2006.
  • [10] De pilli T, Giuliani R, Derossi A, Severini C. “Effects of microwave drying on lipid oxidation of stuffed pasta”. Journal of American Oil Chemists’ Society, 85, 827-834, 2008.
  • [11] Mercier S, Villeneuve S, Mondor M, Des marchais LP. “Evolution of porosity, shrinkage and density of pasta fortified with pea protein concentrate during drying”. LWT-Food Science and Technology, 44(4), 883-890, 2011.
  • [12] Colak N, Erbay Z, Hepbasli A. “Performance assessment and optimization of industrial pasta drying”. International Journal of Energy Research, 37(8), 913-922, 2013.
  • [13] Pronyk CW. Effects of Superheated Steam Processing on the Drying Kinetics and Textural Properties of İnstant Asian Noodles. PhD Thesis, The University of Manitoba, Winnipeg, Canada, 2007.
  • [14] Inazu T, Iwasaki KI, Furuta T. “Desorption isotherms for Japanese noodle (udon)”. Drying Technology, 19(7), 1375-1384, 2001.
  • [15] Mamat KA, Yusof MS, Yusoff WFW, Rahim MZ, Hassan S, Rahman MQA, Karim MA. “Dehydration of traditional dried instant noodle (mee siput) using controlled temperature & humidity dryer”. IOP Conference Series: Materials Science and Engineering, Johor Bahru, Malaysia, 19-20 April 2017.
  • [16] Darvishi H, Azadbakht M, Rezaeiasl A, Farhang A. “Drying characteristics of sardine fish dried with microwave heating”. Journal of the Saudi Society of Agricultural Sciences, 12(2), 121-127, 2013.
  • [17] Maskan M. “Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying”. Journal of Food Engineering, 48(2), 177-182, 2001.
  • [18] Henderson SM, Pabis S. “Grain drying theory I: Temperature effect on drying coefficient”. Journal of Agricultural Engineering Research, 6, 169-174, 1961.
  • [19] Lewis WK. “The rate of drying of solid materials”. Industrial & Engineering Chemistry, 13(5), 427-432, 1921.
  • [20] Page GE. Factors Influencing the Maximum Rate of Air Drying Shelled Corn in Thin-Layers. MSc Thesis, Purdue University, West Lafayette, USA, 1949.
  • [21] White GM, Bridges TC, Loewer OJ, Ross IJ. “Seed coat damage in thin layer drying of soybeans as affected by drying conditions”. Transactions of the ASAE, 23(1), 224-227, 1978.
  • [22] Chandra PK, Singh RP. Applied Numerical Methods for Food and Agricultural Engineers, CRC Press, Boca Raton, USA, 1995.
  • [23] Lertworasirikul S. “Drying kinetics of semi-finished cassava crackers: A comparative study”. LWT-Food Science and Technology, 41(8), 1360-1371, 2008.
  • [24] Kongkiattisak P, Songsermpong S. “Effect of temperature and velocity of drying air on kinetics, quality and energy consumption in drying process of rice noodles”. Kasetsart Journal-Natural Science, 46, 603-619, 2012.
  • [25] Salari A, Tehrani MM, Razavi SM. “Baking-drying kinetics of crisp bread: The influence of bran content and baking temperature”. Iranian Food Science and Technology Research Journal, 11(3), 225, 2015.
  • [26] Litchfield JB, Okos MR. “Moisture diffusivity in pasta during drying”. Journal of Food Engineering, 17(2), 117–142, 1992.
  • [27] Kaushal P, Sharma HK. “Convective dehydration kinetics of noodles prepared from taro (Colocasia esculenta), rice (Oryza sativa) and pigeonpea (Cajanus cajan) flours”. Agricultural Engineering International: CIGR Journal, 15(4), 202-212, 2013.
  • [28] Susanti DY, Karyadi JNW, Mariyam S. “Drying characteristics of crackers from sorghum using tray dryer in different drying air velocities”. Journal of Advanced Agricultural Technologies, 3(4), 258-263, 2016.
  • [29] Zhou M, Xiong Z, Cai J, Xiong H. “Convective air drying characteristics and qualities of non-fried instant noodles”. International Journal of Food Engineering, 11(6), 851-860, 2015.
  • [30] Chen W, Li H, Jiao X, Gui X. “Study on freeze-drying process of dumpling wrappers”. Advance Journal of Food Science and Technology, 8(6), 440-445, 2015.