KOH ve ZnCl2 Aktivasyonu ile Çanakkale-Çan Linyitinden Aktif Karbon Üretimi ve Karakterizasyonu

Aktivasyon reaktifi olarak potasyum hidroksit (KOH) ve çinko klorür (ZnCl2) kullanılarak Çanakkale-Çan linyitinden aktif karbon üretilmiştir. Hazırlanan aktif karbonların verim ve gözenek gelişimi üzerine karbonizasyon sıcaklığının ve reaktif türünün etkisi incelenmiştir. Elde edilen aktif karbonlar verim, BET yüzey alanı, gözenek hacimleri ile mikro ve mezo gözenek fraksiyonu açısından karakterize edilmiştir. Sonuçlar karbonizasyon sıcaklığının artmasıyla verimin düştüğünü yüzey alanı ve gözenekliliğinin artığını göstermiştir. En yüksek yüzey alanı KOH aktivasyonunda 900 0C, 1 h karbonizasyon süresinde 1092 m2/g olarak elde edilmiştir. Linyit örneğinin kimyasal madde ile emdirilmeden 900 0C'de karbonizasyonu sonucu elde edilen çarın yüzey alanı 157 m2/g bulunmuştur. Bu verilerden, yüksek yüzey alanı ve gözenekliliğe sahip aktif karbon üretimi için tek başına ısıl işlemin yeterli olmadığı görülmüştür. Elde edilen aktif karbonlar ticari aktif karbonla karşılaştırılmıştır. KOH ve ZnCl2 aktivasyonu ile elde edilen aktif karbonların yüzey alanı ve mikro gözenek fraksiyonunun ticari aktif karbondan daha yüksek olduğu tespit edilmiştir.

Production and Characterization of Activated Carbon from Çanakkale-Çan Lignite by KOH and ZnCl2 Activation

Activated carbon was produced from Çanakkale-Çan lignite using potassium hydroxide (KOH) and zinc chloride (ZnCl2) as activating agent. The influence of carbonization temperatures (500-900 0C) and different chemical reagents (KOH and ZnCl2) on the pore development and the yield of the prepared activated carbon were investigated. The resultant activated carbons were characterized in terms of the yield, BET surface area, pore volumes, micropore and mesopore fraction. Results showed that increasing the carbonization temperature, the yield decreased, while surface area and micro-porosity increased. Maximum surface area was about 1092 m2/g at 900 0C with KOH activation and carbonization duration of 1 h. The surface area of char obtained from carbonization of lignite sample without impregnation by chemical reagent was 157 m2/g at 900 0C. From these data, it has been showed that in order to produce activated carbons with high surface area and porosity, thermal activation (without impregnation) itself is not sufficient. The prepared activated carbon was compared with commercial activated carbon. Surface area and micropore fraction of activated carbons obtained from both KOH and ZnCl2 activation much larger than those of the commercial activated carbon.

___

  • Bansal, R.C., Donnet, J.B. Stoeckli H.F., Active carbon, New York: Marcel Dekker, 1988.
  • Lozano-Castello, D., Lillo-Rodenas, M. A., Cazorla-Amoros, D., Linares-Solano, A. Preparation of activated carbons from Spanish anthracite I. Activation by KOH, Carbon (39), 741-749, 2001.
  • Adinata, D., Daud, M.A., Aroua, M.K., Preparation and characterization of activated carbon from palm shell by chemical activation with KCO3, Bioresour Technol., (98), 145-149, 2007.
  • Chattopadhyaya, G., Macdonald D.G., Bakhshi, N.N., Mohammadzadeh, J.S.S., Dalai, A.K. Preparation and characterization of chars and activated carbons from Saskatchewan lignite, Fuel Processing Technology (87), 997–1006, 2006.
  • Kirubakaran, C.J., Krishnaiah, Seshadri, S.K., Experimental study of the production of activated carbon from coconut shells in fluidized bed reactor, Ind. Eng. Chem. Res (27), 2411–2416, 1991.
  • Mozammela, H.M., Masahiroa, O., Bhattacharya S.C., Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy (22), 397–400, 2002.
  • Hayashi, J., Horikawa, T., Takeda, I., Muroyama, K., Ani, FN., Preparing activated carbon from various nutshells by chemical activation with K2CO3. Carbon, (40), 2381-6, 2002.
  • Yavuz, R., Akyildiz, H., Karatepe, N. Çetinkaya, E., Influence of preparation conditions on porous structures of olive stone activated by H3PO4, Fuel Processing Technology, 91 (1), 2010.
  • Zhang, H., Yan, Y., Yang, L., Preparation of activated carbon from sawdust by zinc chloride activation, Adsorption, (16), 161–166, 2010.
  • Gomez-Serrano, V., Cuerda-Correa, E.M., Fernandez- Gonzalez, M.C., Alexandre-Franco, M.F., Macias-Garcia, Preparation of activated carbons from chestnut wood by phosphoric microporosity and fractal dimension. Mater. Lett. (59), 846–853, 2005. activation. Study of
  • Karacan F., Özden Ü., Karacan S., Optimization Manufacturing Conditions for Activated Carbon from Turkish Lignite by Chemical Activation using Response Surface Methodology. Applied Thermal Engineering, (27), 1212-1218, 2007.
  • Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A.P., Preparation of activated carbon from lignin by chemical activation. Carbon (38), 1873-8, 2000.
  • Yalçın, N, Sevinç, V., Studies of the surface area and porosity of activated carbons prepared from rice husk, Carbon, (38), 1943-45, 2000.
  • Ahmadpour, A., Do, D.D., The preparation of activated carbon from macadamia nutshell by chemical activation, Carbon, (35), 1723–1732, 1997.
  • Guo, Y., Yu, K., Wang, Z., Xu, H., Effects of activation conditions on prepararion of porous carbon from rice husk, Carbon (41), 1645-87, 2003.
  • Rodriquez–Reinoso F., Molina-Sabio M., Carbon, 30 (7), 1111-8, 1992.
  • Hsu, L. Y., Teng, H. Influence of different chemical reagents on the preparation of activated carbon from bituminous coal. Fuel Process. Technol. (64), 155-166, 2000.
  • Guo, J., Lua, A.C., Textural and chemical characterizations of adsorbent prepared from palm shell by potassium hydroxide impregnation at different stages. J Colloid Interface Sci., (254), 227-33, 2002.
  • Mohanty, K., Jha, M., Meikap, B.C., Biswas, M.N., Removal of malachite gren (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chemical Engineering Science 60, 3049–3059, 2005.
  • Mohanty, K., Das, D., Biswas, M.N., Adsorption of phenol from aqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation. Chemical Engineering Journal 115, 121–131, 2005.
  • Çuhadaroglu, D., Uygun, O. A., Production and characterization of activated carbon from a bituminous coal by chemical activation, African Journal of Biotechnology. 7 (20); 3703, 2008.
  • Gong, G-Z., Xie Q., Zheng, Y-F., Ye S-F, Chen, Y-F., Regulation of pore size distribution in coal-based activated carbon. New Carbon Materials, 24 (2): 141–146, 2009.
  • Kubota, M., Hata, A., Matsuda, H., Preparation of activated carbon from phenolic resin by KOH chemical activation under microwave heating, Carbon (47), 2805–2811, 2009.
  • Rouquerol, F., Rouquerol, I., Sing, K., Adsorption by Powders and Porous Solids, Academic Press, London, 404, 1999.
  • Stavropoulos, G.G., Precursor materials suitability for super activated carbons production. Fuel Processing Technology 86, 1165– 1173, 2005.
  • Brunauer, S., Emmett, P.H., Teller, E., Adsorption of gases in multimolecular layers, J Am Chem Soc, (60), 309, 1938.
  • Dubinin, M.M., Radushkevich, L.V., Equation of the characteristic curve of activated charcoal, Proc Acad Sci, Phys Chem Sec, USSR (55), 331–3, 1947.
  • Tseng, R., Tseng, S., Pore structure and adsorption performance of the KOH activated carbons prepared from corncob. J Colloid Interface Sci., (287), 428-37, 2005.
  • Deng, H., Li, G., Yang, H., Tang, J., Tang, J., Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal (163), 373–381,2010.
  • Ahmadpour, A., Do, D. D., The preparation of active carbon from coal by chemical and physical activation. Carbon 34 (4); 471., 1996.
  • Teng, H., Yeh, T.S.. Preparation of activated carbons from bituminous coal with zinc chloride activation, Ind. Eng. Chem. Res. 37, 58-65, 1998.
  • Küçükgül, E. Y., Ticari Aktif Karbon Üretimi ve Özelliklerinin Belirlenmesi, Dokuz Eylül Üni. Müh. Fak., Fen ve Mühendislik Dergisi, 6, 41-56, 2004.
  • Weber, J. Jr., Canale, R. P., Physicochemical Processes for Water Quality Control, 1972. USA http://www.activated- carbon.com/carbon.html
  • Jagtoyen, M., Derbyshire, F., Some considerationsorigins of porosity in carbons from chemically activated wood, Carbon, (32), 1185-1192, 1993.
  • Caturla, F., Molina-Sabio, M., Rodriguez-Reinoso, F., Preparation of activated carbon by chemical activation with ZnCl, Carbon, (29), 999–1007,1991.
  • Jagtoyen, M., Thwaites, M., Stencel, J., McEnaney, B., Derbyshire, F., Adsorbent carbon synthesis from coals by phosphoric acid activation, Carbon (30), 1089–1096, 1992.
  • Ibarra, J.V. Moliner, R. Palacios, J.M., Catalytic Effects of Zinc Chloride in the Pyrolysis of Spanish High Sulphur Coals, Fuel (70), 727-732, 1991.
  • Benaddi, H., Legras, D., Rouzaud, J.N., Beguin, F., Influence of the atmosphere in the chemical activation of wood by phosphoric acid, Carbon, (36), 306-309, 1998.
  • Depçi, T., Comparison of activated carbon and iron impregnated activated carbon derived from Golbası lignite to remove cyanide from water. Chemical Engineering Journal (181–182), 467– 478, 2012.
  • Yamashita, Y., Ouchi, K., Influence of alkali on the carbonization process: I. Carbonization of 3,5- dimethyiphenol-formaldehyde resin with NaOH, Carbon, (20), 41-45, 1982.
  • McKee, D.W., Mechanisms of the alkali metal catalyzed gasification of carbon, Fuel (62), 170–175, 1983.
  • Marsh, H., Rodriguez-Reinoso, F., Activated Carbon, Elsevier, pp. 322–365, (Chapter 6), 2006.
  • Lillo-Ródenas, M.A., Juan-Juan, J., Cazorla-Amoros, D., Linares-Solano, A. About reactions occurring during chemical (42), 1371–1375, 2004. with activation hydroxides, Carbon,