Aısı 1040 Çeliğinin Aşındırıcı Su Jeti İle tornalama İşleminde İşleme Paremetrelerinin Talaş Kaldırma Hacmine Ve Kesme Derinliğine Etkisi

Bu çalışmada, AISI 1040 çeliğinin aşındırıcı su jeti ile tornalanması esnasında işleme parametrelerinin kaldırılan talaş hacmime ve kesme derinliğine etkisi araştırılmıştır. Yapılan çalışmada deney sayısının en az olması için literatürde yapılmış olan çalışmalar göz önüne alınmış ve ön deneyler sonucu elde edilen tecrübelerle en uygun işleme parametre değerleriyle deneyler gerçekleştirilmiştir. Deneysel çalışmalarda pompa basıncı (350 MPa), aşındırıcı boyutu (Garnet formunda ve boyutu 80 mesh) ve nozul çapı (1.2 mm) sabit tutulmuştur. Ø 30 ve 240 mm ebatlarında 1040 çeliği, dört farklı aşındırıcı akış oranı (50, 150, 250 ve 350 gr/dak.), nozul mesafesi (2, 5, 8 ve 11 mm), nozul ilerleme miktarı (5, 15, 25 ve 35 mm/dak.) ve torna aynası deviri (25, 50, 75 ve 100 dev/dak.) işleme parametreleri değerlerinde işlenmiştir. Elde edilen bulgulara göre en yüksek talaş hacmi 5 mm/dak nozul ilerleme miktarında 1387,25 mm3 elde edilmiştir. En yüksek kesme derinliği ise 0,94 mm olarak 100 dev/dak torna aynası devrinde elde edilmiştir.

The Effect of Process Parameters on Machining Volume and Depth Of Cut In Turning Operation Of AISI 1040 Steel With Abrasive Water Jet

In this study the effect of processing parameters during turning of AISI 1040 steel with abrasive water jet on machining volume and depth of cut. In the study, in order to keep the experiment quantity low, former studies in literature were taken into consideration and therefore experiments were realized with processing parameters and experiences that are most suitable to pre-experiments. In experimental studies pump pressure (350 MPa), abrader dimensions (in garnet form and dimension 80 mesh) and nozzle diameter (1.2 mm) were kept constant. 1040 steel with dimensions of Ø 30 and 240 mm were processed at four different abrader flow rate (50, 150, 250 and 350 gr/min), nozzle distance (2, 5, 8 and 11 mm), nozzle feed rate (5, 15, 25 and 35 mm/min) and lathe chuck revolutions (25, 50, 75 and 100 rpm). According to the findings the most highly material removal rate of 5 mm / min nozzle feed rate 1387.25 mm3 in the amount has been achieved. The maximum depths of cut 0.94 mm spindle speed of 100 rpm were obtained.

___

  • Hashish, M., "Optimization Factors in Abrasive Waterjet Machining", Journal of Engineering for Industry, 113, 29-37, 1991.
  • Zeng, J., Kim, T. J., "Development of an Abrasive Waterjet Kerf Cutting Model for Brittle Materials", Proceedings of 11th Int. Conference on Jet Cutting Technology, 43-47, 1992.
  • Franz, N. C., "Fluid Additives for Improving High Velocity Jet Cutting", First International Symposium on Jet Cutting Technology, 1972.
  • Walstad, O. M., Noecker, P. W., "Development of High Pressure Pumps and Associated Equipment for Fluid Jet Cutting", First International Symposium on Jet Cutting Technology, 1972.
  • Davim, J. P., Reis, P. and Antonio, C. C., “Drilling fiber reinforced plastics manufactured by hand lay-up: influence of matrix”, Journal of Materials Processing Technology, Vol. 155-156, pp. 1828-1833, 2004.
  • Davim, J. P., Rubio, J. C. and Abrao, A. M., “A novel approach based on digital image analysis to evaluate the delamination factor after drilling composite laminates”, Composites Science and Technology, Vol. 67, pp. 1939-1945, 2007.
  • Kovacevic, R., Hashish, M., Mohan, R., Ramulu, M., Kim, T. J., Geskin, E. S., “State of the art of research and development in abrasive waterjet machining”, J Manuf. Sci Eng, 119, pp. 776–785, 1997.
  • Aklint, T. et al., "Abrasive waterjet cutting for micro manufacturing", 7th International Conference on Multi-Material Micro Manufacture, 2010.
  • Miller, D. S., “Micro machining with abrasive waterjets”, Journal of Materials Processing Technology, 149, 37-42, 2004.
  • Paul, S., Hoogstrate, A.M., van Luttervelt, C.A., Kals H. J. J., “Analytical and experimental modeling of the abrasive water jet cutting of ductile materials”, Journal of Materials Processing Technology, 73, pp. 189–199, 1998.
  • Kong, C., Axinte, D., “Response of Ti Aluminide alloy to abrasive waterjet cutting: geometrical accuracy and surface integrity issues vs. process parameters”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223: 19-42, 2009.
  • Hashish, M., “Optimization Factors in Abrasive Waterjet Machining”, Journal of Engineering for Industry, 113, 29-37, 1991.
  • Wang, J., “A machinability study of polymer matrix composites using abrasive waterjet cutting technology”, J Mater Process Technol., pp. 30–35, 1999.
  • Hoogstrate, A., van Luttervelt, C. A., “Opportunities in abrasive water-jet machining”, CIRP Annals, 46/2: 697-714, 1997.
  • Hashish, M., Steele, D. E., Bothell, D. H., “Machining with super-pressure (690 MPa) waterjets”, International Journal of Machine Tools and Manufacture, 37/4, 465-479 1997.
  • Hoogstrate, A, Susuzlu, T, Karpuschewski, B., “High performance cutting with abrasive waterjets beyond 400 MPa”, CIRP Annals, 55, 339-342, 2006.
  • Kong, M.C., Axinte, D.A., Voice, W., “Aspects of material removal mechanism in plain waterjet milling on gamma titanium aluminide”, Journal of Materials Processing Technology, 210, 573-584, 2010.
  • Kong, M.C., Axinte, D., Voice, W., “An innovative method to perform maskless plain water jet milling for pocket generation: a case study in Ti-based super alloys”, International Journal of Machine Tools and Manufacture, 51/7-8, 642-648, 2011.
  • Fan et al., J.M. Fan, C.M. Fan, J., Wang “Modeling the material removal rate in micro abrasive water jet machining of glasses” Advanced Materials Research, 135, pp. 370–375, 2010.
  • Akkurt, A., et al. "Effect of feed rate on surface roughness in abrasive waterjet cutting applications", Journal of Materials Processing Technology, 147 389-396, 2004.
  • Fan, J.M., Wang, C.Y., Wang, J., “Development of Micro Abrasive Jet Machining Technology” Diamond and Abrasives Engineering, 145, pp. 25–30, 2005.
  • Hashish, M., “Turning, milling, and drilling with abrasivewaterjets” Proc. 9th Int. Symp. on Jet Cutting Technology, 1988.
  • El-Hofyand H., Youssef, H., "Environmental Hazards of Nontraditional Machining", Proceedings of the 4th International Conference on Energy& Environment, 474-055-2009.
  • Momber, A.W. and Kovacevic, R., “Principles of Abrasive Water Jet Machining”, Springer Verlag Ltd, London, 1998.
  • Hashish, M., Whalen, J., “Precision drilling of ceramic coated components with abrasive water jets”, J. Eng. Gas Turbine Power, (115), pp. 148–154, 1993.
  • Palleda, M., "A study of taper angles and material removal rates of drilled holes in the abrasive water jet machining process", Journal of Materials Processing Technology, Volume 189, Issues 1-3, 6, pp. 292-295, 2007.
  • Manu, R., Babu, N. R., "An erosion-based model for abrasive waterjet turning of ductile materials", Wear (266), 1091-1097, 2009.
  • Ansari, A.I. and. Hashish, M., "Effect of abrasive waterjet parameters on volume removal trends in turning", ASME Journal of Engineering for Industry, Vol. 117, pp. 475-484, 1995.
  • Kartal, F., Gökkaya, H., "Aşındırıcı Su Jeti ile Tornalama Deney Düzeneği Tasarımı", International Iron& Steel Symposium, Karabük, Türkiye, 2012.
  • Kartal, F., Gökkaya, H., Nalbant, M., “Turning of (Cu-Cr-Zr) alloy with abrasive water jet”, 21st International Conference on Water Jetting, Ottawa, Canada, 2012.