İçten yanmalı dizel motorunun atık egzoz gazı enerjisi kullanılarak elektrik enerjisi üretimi

Bu çalışmada, termoelektrik jeneratörlerin çalışma prensiplerine uygun olarak çalışan bir prototip geliştirilerek içten yanmalı dizel bir motorun egzoz sistemine uygulanmıştır. Amaç, egzoz gazlarıyla atmosfere atılan ısı enerjisini kullanılabilir bir elektrik enerjisine dönüştürmektir. Termoelektrik modüllerin çalışma şartı olan fark sıcaklıklarını oluşturmak amacıyla sistemde iki farklı akışkan kullanılmıştır. Bunlardan ilki, sıcak yüzey şartını oluşturmak için kullanılan egzoz gazlarıdır. Diğer akışkan ise, termoelektrik modüllerde ihtiyaç duyulan fark sıcaklığının oluşmasını sağlayan soğutma suyudur. Malzemesi alüminyum alaşım olan sekizgen yapıya yerleştirilen 40 adet termoelektrik modül kendi aralarında elektriksel olarak seri bağlanmıştır. Motorda değişen devir ve yük durumuna göre termoelektrik jeneratör sisteminin performansı incelenmiştir. Aynı zamanda, termoelektrik jeneratör sisteminin ürettiği elektrik enerjisi konvertöre aktarılarak araç aküsü şarj edilmiştir.

___

  • Temizer İ, İlkılıç C, Tanyeri B, Ömer C. “Effects on vehicle systems of technology thermoelectrıc”. Batman University Journal of Life Sciences, 1(2), 199-209, 2012.
  • Niu X, Yu J, Wang S. “Experimental study on low-temperature waste heat thermoelectric generator”. Journal of Power Sources, 188(2), 621-626, 2009.
  • Liang G, Zhou J, Huang X. “Analytical model of parallel thermoelectric generator”. Applied Energy, 88(12), 5193-5199, 2011.
  • Balcı C. Climatization of a Vehicle Cabinet by an NH3-H2O Absorption System Performing with Exhaust Gas Energy. Süleyman Demirel University, Institute of Science and Technology, 2011.
  • Bağırov H, Can İ, Kapıcıoğlu A. “Stratified charge flame ignite in a gasoline engine conform to the engine operating regimes of indicator of combustion characteristics and burn time and their empirical equations”. Tem Journal, 3(1), 55-58, 2014.
  • Milli Eğitim Bakanlığı.’’Emisyon Azaltıcı Sistemler’’. http://www.megep.meb.gov.tr/mte_program_modul/moduller_pdf/Egzoz%20Emisyon%20Kontrol%C3%BC.pdf (14.07.2014)
  • Ivankovic R, Cros J, Kakhki MT, Martins CA, Viarouge P. ‘’Power electronic solutions to improve the performance of lundell automotive alternators’’. New Advances in Vehicular Technology and Automotive Engineering, 978-953-51-0698-2, 2012.
  • Ramesh Kumar C, Sonthalia A, Goel R. “Experimental study on waste heat recovery from an IC engine using thermoelectric technology”. Thermal Science, 15(4), 1011-1022, 2011.
  • Hsu CT, Huang GY, Chu HS, Yu B, Yao DJ. “An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator modüle”. Applied Energy, 88(12), 5173-5179, 2011.
  • Hsu CT, Huang GY, Chu HS, Yu B, Yao DJ. “Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators”. Applied Energy, 88(4), 1291-1297, 2011.
  • Yang J. ‘’Potential applications of thermoelectric waste heat recovery in the automotive industry’’. 24th International Conference on Thermoelectrics, USA, 19-23 June 2005.
  • Kühn R, Koeppen O, Kitte J. “Influence of an optimized thermoelectric generator on the back pressure of the subsequent exhaust gas system of a vehicle”. Journal of Electronic Materials, 15(4), 1521-1526, 2013.
  • Kober M. “Methodical concept development of automotive thermoelectric generators (TEG)”. 3rd International Conference Thermoelectric goes Automotive, Berlin, Germany, 21-23 November 2012.
  • Incropera FP, DeWitt DP. Fundamentals of Heat and Mass Transfer. 4th ed, USA, John Wiley & Sons, 2007.
  • Vázquez J, Sanz-Bobi MA, Palacios R, Arenas A. ‘’State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles’’, Universidad Pontificia Comillas , 23 -28015, 2002.
  • Kaya AY. Experimental Research of Thermoelectric System that Worked by the Heat on Exhaust Gas, MSc Thesis, Süleyman Demirel University, Isparta, Turkey, 2010.
  • Braig T, Ungethüm J. “System-level modeling of an ICE-powered vehicle with thermoelectric waste-heat-utilization”. 7th Modelica Conference, Como, Italy, 20-22 September 2009.
  • Wojciechowski K. Merkisz J. Fuć P. Lijewski P. Schmidt M. “Study of recovery of waste heat from the exhaust of automotive engine” Poznan University Of Technology, Piotrowo 3, 60-965, 2007.
  • Gurbuz H, Akcay H. “Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine”. Thermal Science, 19(6), 2049-2064, 2015.
  • Liu C, Chen P, Li K. “A 1 KW thermoelectric generator for low-temperature geothermal resources”. 39th Workshop on Geothermal Reservoir Engineering, Stanford, California, USA, 24-26 February 2014.
  • Derun EM. A Study on Thermoelectrical, Structural and Microstructural Properties of Sb2Te3 and Bi2Te3 Semiconductive Alloys. MSc Thesis, Yıldız Technical University, Istanbul, Turkye, 2005.
  • Zhang Y, Cleary M, Wang X, Kempf N, Schoensee L, Yang J, Meda L. “High-temperature and high-power-density nanostructured thermoelectric generator for automotive waste heat recovery”. Energy Conversion and Management, 105, 946-950, 2015.
  • Crane TD. “Potential thermoelectric applications in diesel vehıcles”. 9th Diesel Engine Emissions Reduction (DEER) Conference, Newport, Rhode Island, 25 August 2003.
  • Yu C. Chau KT. “Thermoelectric automotive waste heat energy recovery using maximum power point tracking”. Energy Conversion and Management. 50(6), 1506-1512, 2009.
  • Love ND, JP. Szybist JP, Sluder CS. “Effect of heat exchanger material and fouling on thermoelectric exhaust heat recovery”. Applied Energy, 89(1), 322-328, 2012.
  • Bensaid S, Brignone M, Ziggiotti A, Specchia S. “High efficiency Thermo-Electric power generator”. International Journal of Hydrogen Energy, 37(2), 1385-1398, 2012.
  • Gao X, Andreasen JS, Chen M, Kaer SK. “Numerical model of a thermoelectric generator with compact plate-fin heat exchanger for high temperature PEM fuel cell exhaust heat recovery”. International Journal of Hydrogen Energy. 37(10), 8490-8498, 2012.
  • Suter C, Jovanovic Z, Steinfeld A. “A 1 kWe thermoelectric stack for geothermal power generation-modeling and geometrical optimization”. Applied Energy, 99, 379-385, 2012.
  • Meng F, Chen L, Sun F. “A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities”. Energy, 36(5), 3513-3522. 2011.
  • Huang HS, Weng YC, Chang YW, Chen SL, Ke MT. “Thermoelectric water-cooling device applied to electronic equipment”. International Communications in Heat and Mass Transfer, 37(2), 140-146, 2010.
  • Zhou Y. Energy Harvesting Using a Thermoelectric Generator and Generic Rule Bused Energy Management. For the Degree of Master of Science, Case Western Reserve University, Ohio, 2008.
  • Temizer İ, İlkılıç C.’’ The performance and analysis of the thermoelectric generator system used in diesel engines’’. Renewable and Sustainable Energy Reviews, 63, 141–151, 2016.