Bira atıkları ve değerlendirme yöntemleri

Atık yönetimi, biracılık sektörü de dahil olmak üzere tüm gıda endüstrisi için çevre bileşenlerinin korunması, kirliliğin önlenmesi ve ekonomik üretim için kritik bir öneme sahiptir. Çevre kirliliği, dünya nüfusundaki artış ve buna bağlı olarak daha verimli üretim yöntemlerinin geliştirilmek zorunda olması gibi nedenlerle atık ve yan ürünlerin geri kazanılması ve bu atıklardan katma değeri yüksek ürünlerin üretilmesi zorunlu hale gelmektedir. Bira üreticileri, atıkların yönetimi için ülkeler tarafından yürürlüğe sokulan çevre ile ilgili yasal düzenlemelere uymak zorunda olup, bu konuda ciddi yatırımlar yapmaktadırlar. Bira sanayi için olumsuz bir maliyet unsuru olan organik yapıdaki bira sanayi atıkları, biyoteknolojik süreçler için ucuz maliyeti ve zengin kimyasal kompozisyonu ile gelecek vaat eden bir ham madde kaynağını oluşturmaktadır. Bu çalışmada, bira üretimi sonucunda ortaya çıkan çeşitli atık ve yan ürünler tanımlanmış ve bu atıklar ile yan ürünlerin biyoteknolojik yöntemlerle değerlendirilme olanakları incelenmiştir.

___

  • [1] Türkiye İstatistik Kurumu. “Bitkisel Üretim İstatistikleri”. http://tuik.gov.tr/PreTablo.do?alt_id=1001 (01.04.2019).
  • [2] T.C. Tarım ve Orman Bakanlığı Tütün ve Alkol Dairesi Başkanlığı. “Piyasa İstatitikleri” https://www.tarimorman.gov.tr/TADB/Menu/23/Alkol-Ve-Alkollu-Ickiler-Daire-Baskanligi (03.04.2019).
  • [3] The Brewers of Europe. “Beer Statistics 2018 Edition”. Brussels, Belgium, 2018.
  • [4] Ishiwaki N, Murayama H, Awayama H, Kanauchi O, Sato T. “Development of high value uses of spent grain by fractionation technology”. MBAA Technical Quarterly, 37, 261-265, 2000.
  • [5] Mussatto SI, Dragone G, Roberto IC. “Brewers' spent grain: generation, characteristics and potential applications”. Journal of cereal science, 43(1), 1-14, 2006.
  • [6] De Gaetano G, Costanzo S, Di Castelnuovo A, Badimon L, Bejko D, Alkerwi A, Chiva-Blanch G, Estruch R, La Vecchia C, Panico S, Pounis G, Sofi F, Stranges S, Trevisan M, Ursini F, Cerletti C, Donati MB, Iacoviello L. “Effects of moderate beer consumption on health and disease: A consensus document”. Nutrition, Metabolism and Cardiovascular Diseases, 26(6), 443-467, 2016.
  • [7] Bamforth CW. “Nutritional aspects of beer-a review”. Nutrition research, 22(1-2), 227-237, 2002.
  • [8] USDA United States Department of Agriculture Agricultural Research Service. “USDA Branded Food Products Database- National Nutrient Database for Standard Reference Release 1”. https://ndb.nal.usda.gov/ndb/foods/show/14003?man=&lfacet=&count=&max=25&qlookup=Alcoholic+beverage%2C+beer%2C+regular%2C+all&offset=&sort=default&format=Abridged&reportfmt=other&rptfrm=&ndbno=&nutrient1=&nutrient2=&nutrient3=&subset=&totCount=&measureby=&Qv=5&Q329746=1&Q329747=1&Qv=10&Q329746=1&Q329747=1 (23.03.2019).
  • [9] Kondo K. “Beer and health: preventive effects of beer components on lifestyle-related diseases”. Biofactors, 22(1-4), 303-310, 2004. [10] Kunze W. Technology, Brewing and Malting. International ed. Berlin, Germany, VLB Berlin, 1996.
  • [11] Candan B. Arpa, Malt ve Birada β-glukan İçeriği ve Bira Kalitesi Üzerine Etkileri. Yüksek Lisans Tezi, Ege Üniversitesi, İzmir, Türkiye, 2009.
  • [12] Briggs DE, Boulton CA, Brookes PA, Stevens R. Brewing Science and Practice, 1st ed. Cambridge, England, Wood head Publishing Limited Cambridge and CRC Press, 2004.
  • [13] Mussatto SI. Biotechnological Potential of Brewing Industry By-Products. Editors: Singh-Nee Nigam, P, Pandey, A. Biotechnology for agro-industrial residues utilization, 313-326, Springer, Dordrecht, Netherlands, 2009.
  • [14] Pérez-Bibbins B, Torrado-Agrasar A, Salgado JM, de Souza Oliveira RP, Dominguez JM. “Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview”. Waste management, 40, 72-81, 2015.
  • [15] Budaraju S, Mallikarjunan K, Annor G, Schoenfuss T, Raun R. “Effect of pre-treatments on the antioxidant potential of phenolic extracts from barley malt rootlets”. Food Chemistry, 266, 31-37, 2018.
  • [16] Waters DM, Kingston W, Jacob F, Titze J, Arendt EK, Zannini E. “Wheat bread biofortification with rootlets, a malting by‐product”. Journal of the Science of Food and Agriculture, 93(10), 2372-2383, 2013.
  • [17] Lewis M. Beer and Brewing. Editor: Kirk‐Othmer. Encyclopedia of Chemical Technology, 1-30, United States, Wiley, 2000.
  • [18] Aggelopoulos T, Katsieris K, Bekatorou A, Pandey A, Banat IM, Koutinas AA. “Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production”. Food Chemistry, 145, 710-716, 2014.
  • [19] Pejin J, Radosavljević M, Pribić M, Kocić-Tanackov S, Mladenović D, Djukić-Vuković A, Mojović L. “Possibility of L- (+)-lactic acid fermentation using malting, brewing, and oil production by-products”. Waste Management, 79, 153-163, 2018.
  • [20] Anagnostopoulos VA, Manariotis ID, Karapanagioti HK, Chrysikopoulos CV. “Removal of mercury from aqueous solutions by malt spent rootlets”. Chemical Engineering Journal, 213, 135-141, 2012.
  • [21] Anagnostopoulos V, Symeopoulos B, Bourikas K, Bekatorou A. “Biosorption of U (VI) from aqueous systems by malt spent rootlets. Kinetic, equilibrium and speciation studies”. International Journal of Environmental Science and Technology, 13(1), 285-296, 2016.
  • [22] Brestenský M, Nitrayová S, Patráš P, Heger J. “Standardized ileal digestibilities of amino acids and nitrogen in rye, barley, soybean meal, malt sprouts, sorghum, wheat germ and broken rice fed to growing pigs”. Animal feed science and technology, 186(1-2), 120-124, 2013.
  • [23] Cejas L, Romano N, Moretti A, Mobili P, Golowczyc M, Gómez-Zavaglia A. “Malt sprout, an underused beer by-product with promising potential for the growth and dehydration of lactobacilli strains”. Journal of food science and technology, 54(13), 4464-4472, 2017.
  • [24] Beluhan S, Karmeliíc I, Novak S, Marić V. “Partial purification and biochemical characterization of alkaline 5′-phosphodiesterase from barley malt sprouts”. Biotechnology letters, 25(13), 1099-1103, 2003.
  • [25] Yegin S, Buyukkileci AO, Sargin S, Goksungur Y. “Exploitation of agricultural wastes and by-products for production of Aureobasidium pullulans Y-2311-1 xylanase: Screening, bioprocess optimization and scale up”. Waste and Biomass Valorization, 8(3), 999-1010, 2017.
  • [26] Kostyleva EV, Tsurikova NV, Sereda AS, Velikoretskaya IA, Veselkina TN, Lobanov NS, Shashkov IA, Sinitsyn AP. “Enhancement of activity of carbohydrases with endo-depolymerase action in trichoderma reesei using mutagenesis”. Microbiology, 87(5), 652-661, 2018.
  • [27] Losev VN, Buyko OV, Borodina EV, Samoilo AS, Zhyzhaev AM, Velichko BA. “Biosorbents based on pine sawdust and malt sprouts for preconcentration and ICP-OES determination of nonferrous, heavy, and precious metals in the environmental samples”. Separation Science and Technology, 53(11), 1654-1665, 2018.
  • [28] Kondo K, Nagao K, Yokoo Y. “Process for producing food and beverage products from malt sprouts”. US. Patent No. 9.326.542. Washington, DC, US. Patent and Trademark Office, 2016.
  • [29] Salama AA, El‐Sahn MA, Mesallam AS, Shehata AME. “Evaluation of the quality of bread, biscuit and butcher's sausage supplemented with rootlets of malt sprouts”. Food/Nahrung, 41(4), 228-231, 1997.
  • [30] Gareis M, Meussdoerffer F. “Dust of grains and malts as a source of ochratoxin A exposure”. Mycotoxin research, 16(1), 127-130, 2000.
  • [31] Guo HY, Wang B, Qiao JW, Wang G, Li N, Zhao J. “Optimization of solid fermentation conditions of the nattokinase”. Jilin Normal University Journal (Natural Science Edition), 2008(2), 66-68, 2008.
  • [32] Li J, Lin X, Lin D, Lv X, Tong J, Lin Z. Improved mycelium biomass by submerged culture of Antrodia cinnamomea using plackett-burman design and response surface methodology. Editor: Zhang Y. Proceedings of the 2016 International Conference on Biotechnology & Medical Science, 605-617, 5 Toh Tuck Link, Singapore, World Scientific Publishing, 2016.
  • [33] Ning Z, Long Y. “Mutation breeding of β-carotene producing strain B. trispora by low energy ion implantation”. Plasma Science and Technology, 11(1), 110-115, 2009.
  • [34] Fischer K, Bipp HP. “Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues”. Bioresource technology, 96(7), 831-842, 2005.
  • [35] Baltaci SF, Hamamci H. The simultaneous saccharification and fermentation of malt dust and use in the acidification of mash. Journal of the Institute of Brewing, 125(2), 230-234, 2019.
  • [36] Rusín J, Chamrádová K, Obroučka K, Kuča R. “Methane production during laboratory-scale co-digestion of cattle slurry with 10 wt. % of various biowastes”. Polish Journal of Chemical Technology, 14(1), 14-20, 2012.
  • [37] Lorenz H, Fischer P, Schumacher B, Adler P. “Current EU-27 technical potential of organic waste streams for biogas and energy production”. Waste management, 33(11), 2434-2448, 2013.
  • [38] Mussatto SI, Roberto IC. “Acid hydrolysis and fermentation of brewer's spent grain to produce xylitol”. Journal of the Science of Food and Agriculture, 85(14), 2453-2460, 2005.
  • [39] Aliyu S, Bala M. “Brewer’s spent grain: a review of its potentials and applications”. African Journal of Biotechnology, 10(3), 324-331, 2011.
  • [40] Ravindran R, Jaiswal S, Abu-Ghannam N, Jaiswal AK. “A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain”. Bioresource technology, 248, 272-279, 2018.
  • [41] Mussatto SI, Fernandes M, Mancilha IM, Roberto IC. “Effects of medium supplementation and pH control on lactic acid production from brewer's spent grain”. Biochemical Engineering Journal, 40(3), 437-444, 2008.
  • [42] Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gırio FM. “Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941”. Process Biochemistry, 40(3-4), 1215-1223, 2005.
  • [43] Xiros C, Topakas E, Katapodis P, Christakopoulos P. “Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa”. Bioresource technology, 99(13), 5427-5435, 2008.
  • [44] Xiros C, Christakopoulos P. “Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system”. Biotechnology for Biofuels, 2(4), 1-12, 2009.
  • [45] Moldes AB, Torrado A, Converti A, Dominguez JM. “Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus”. Applied Biochemistry and Biotechnology, 135(3), 219-227, 2006.
  • [46] Moreira MM, Morais S, Carvalho DO, Barros AA, Delerue-Matos C, Guido LF. “Brewer's spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds”. Food research international, 54(1), 382-388, 2013.
  • [47] Wakizaka H, Miyake H, Kawahara Y. “Utilization of beer lees waste for the production of activated carbons: The influence of protein fractions on the activation reaction and surface properties”. Sustainable materials and technologies, 8, 1-4, 2016.
  • [48] Dong Y, Lin H. “Competitive adsorption of Pb (II) and Zn (II) from aqueous solution by modified beer lees in a fixed bed column”. Process Safety and Environmental Protection, 111, 263-269, 2017.
  • [49] Sun C, Liu F, Song Z, Wang J, Li Y, Pan Y, Sheng T, Li L. “Feasibility of dry anaerobic digestion of beer lees for methane production and biochar enhanced performance at mesophilic and thermophilic temperature”. Bioresource technology, 276, 65-73, 2019.
  • [50] Bando Y, Fujimoto N, Suzuki M, Ohnishi A. “A microbiological study of biohydrogen production from beer lees”. International Journal of Hydrogen Energy, 38(6), 2709-2718, 2013.
  • [51] Liu P, Li J, Deng Z. “Bio-transformation of agri-food wastes by newly isolated Neurospora crassa and Lactobacillus plantarum for egg production”. Poultry science, 95(3), 684-693, 2016.
  • [52] Pérez‐Bibbins B, Torrado‐Agrasar A, Pérez‐Rodríguez N, Aguilar‐Uscanga MG, Domínguez JM. “Evaluation of the liquid, solid and total fractions of beer, cider and wine lees as economic nutrient for xylitol production”. Journal of Chemical Technology and Biotechnology, 90(6), 1027-1039, 2015.
  • [53] Yang SQ, Xiong H, Yang HY, Yan QJ, Jiang ZQ. “High‐level production of β‐1, 3‐1, 4‐glucanase by Rhizomucor miehei under solid‐state fermentation and its potential application in the brewing industry”. Journal of applied microbiology, 118(1), 84-91, 2015.
  • [54] Van der Merwe AI, Friend JFC. “Water management at a malted barley brewery”. Water SA, 28(3), 313-318, 2002.
  • [55] The Brewers of Europe. “Guidance Note for Establishing BAT in the Brewing Industry”. Brussels, Belgium, 2002.
  • [56] Arantes MK, Alves HJ, Sequinel R, da Silva EA. “Treatment of brewery wastewater and its use for biological production of methane and hydrogen”. International Journal of Hydrogen Energy, 42(42), 26243-26256, 2017.
  • [57] Anggraeni PN, Gunam IBW, Kawuri R. “Potential Bacterial Consortium to Increase the Effectiveness of Beer Wastewater Treatment”. Current World Environment, 9(2), 312-320, 2014.
  • [58] Simate GS, Cluett J, Iyuke SE, Musapatika ET, Ndlovu S, Walubita LF, Alvarez AE. “The treatment of brewery wastewater for reuse: State of the art”. Desalination, 273(2-3), 235-247, 2011.
  • [59] Chen H, Chang S, Guo Q, Hong Y, Wu P. “Brewery wastewater treatment using an anaerobic membrane bioreactor”. Biochemical engineering journal, 105, 321-331, 2016.
  • [60] Fillaudeau L, Blanpain-Avet P, Daufin G. “Water, wastewater and waste management in brewing industries”. Journal of cleaner production, 14(5), 463-471, 2006.
  • [61] Ferreira A, Ribeiro B, Marques PASS, Ferreira AF, Dias AP, Pinheiro HM, Reis A, Gouveia L. “Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for gren energy purposes”. Journal of Cleaner Production, 165, 1316-1327, 2017.
  • [62] Zheng A, Cai A, Xu W, Fang Z. “Treatment and reuse of beer wastewater using the system of phytosysthetic bacteria and spirulina maxima”. Acta Scientiae Circumstantiae, 19(1), 22-27, 1999.
  • [63] Moreira GA, Micheloud GA, Beccaria AJ, Goicoechea HC. “Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks”. Biochemical Engineering Journal, 35(1), 48-55, 2007.
  • [64] Liu JH, Chen YT, Li H, Jia YP, Xu RD, Wang J. “Optimization of fermentation conditions for biosurfactant production by Bacillus subtilis strains CCTCC M201162 from oilfield wastewater”. Environmental Progress & Sustainable Energy, 34(2), 548-554, 2015.
  • [65] Köroğlu EO, Özkaya B, Denktaş C, Çakmakci M. “Electricity generating capacity and performance deterioration of a microbial fuel cell fed with beer brewery wastewater”. Journal of bioscience and bioengineering, 118(6), 672-678, 2014.
  • [66] Vijayaraghavan K, Ahmad D, Samson M. “Biohydrogen generation from beer brewery wastewater using an anaerobic contact filter”. Journal of the American Society of Brewing Chemists, 65(2), 110-115, 2007.
  • [67] Sinbuathong N, Somjit C, Leungprasert S. “Feasibility study for biohydrogen production from raw brewery wastewater”. International Journal of Energy Research, 39(13), 1769-1777, 2015.
  • [68] Boboescu IZ, Ilie M, Gherman VD, Mirel I, Pap B, Negrea A, Kondorosi E, Biro T, Maroti G. “Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate”. Biotechnology for biofuels, 7(1), 139, 2014.
  • [69] Shao X, Peng D, Teng Z, Ju X. “Treatment of brewery wastewater using anaerobic sequencing batch reactor (ASBR)”. Bioresource Technology, 99(8), 3182-3186, 2008.
  • [70] Enitan AM, Adeyemo J, Swalaha FM, Bux F. “Anaerobic digestion model to enhance treatment of brewery wastewater for biogas production using UASB reactor”. Environmental Modeling & Assessment, 20(6), 673-685, 2015.
  • [71] Golub NB, Shchurskaya EA, Trotsenko MV. “Anaerobic treatment of brewary wastewater with simultaneous hydrogen production”. Journal of Water Chemistry & Technology, 36(2), 90-96, 2014.
  • [72] Shi XY, Jin DW, Sun QY, Li WW. “Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach”. Renewable Energy, 35(7), 1493-1498, 2010.
  • [73] Bedini S, Flamini G, Girardi J, Cosci F, Conti B. “Not just for beer: evaluation of spent hops (Humulus lupulus L.) as a source of eco-friendly repellents for insect pests of stored foods”. Journal of Pest Science, 88(3), 583-592, 2015.
  • [74] Baranowski K, Baca E, Salamon A, Michalowska D, Meller D, Karas M, Rolno-Spozywczego IBP. “Possibilities of retrieving and making a practical use of phenolic compounds from the waste products: Blackcurrant and chokeberry pomace and spent hops”. Zywnosc Nauka Technologia Jakosc, 16(4), 100-109, 2009.
  • [75] Krause E, Yuan Y, Hajirahimkhan A, Dong H, Dietz BM, Nikolic D, Pauli FG, Bolton JL, van Breemen RB. “Biological and chemical standardization of a hop (Humulus lupulus) botanical dietary supplement”. Biomedical Chromatography, 28(6), 729-734, 2014.
  • [76] Fiesel A, Ehrmann M, Geßner DK, Most E, Eder K. “Effects of polyphenol-rich plant products from grape or hop as feed supplements on iron, zinc and copper status in piglets”. Archives of Animal Nutrition, 69(4), 276-284, 2015
  • [77] Ziemiński K, Romanowska I, Kowalska M. “Enzymatic pretreatment of lignocellulosic wastes to improve biogas production”. Waste Management, 32(6), 1131-1137, 2012.
  • [78] Oosterveld A, Voragen AG, Schols HA. “Characterization of hop pectins shows the presence of an arabinogalactan-protein”. Carbohydrate Polymers, 49(4), 407-413, 2002.
  • [79] Luzak B, Golanski J, Przygodzki T, Boncler M, Sosnowska D, Oszmianski J, Watala C, Rozalski M. “Extract from spent hop (Humulus lupulus L.) reduces blood platelet aggregation and improves anticoagulant activity of human endothelial cells in vitro”. Journal of Functional Foods, 22, 257-269, 2016.
  • [80] Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG. “Brewer's Saccharomyces yeast biomass: characteristics and potential applications”. Trends in food science & Technology, 21(2), 77-84, 2010.
  • [81] Champagne CP, Gaudreau H, Conway J. “Effect of the production or use of mixtures of bakers or brewers yeast extracts on their ability to promote growth of lactobacilli and pediococci”. Electronic Journal of Biotechnology, 6(3), 185-197, 2003.
  • [82] York SW, Ingram LO. “Ethanol production by recombinant Escherichia coli KO11 using crude yeast autolysate as a nutrient supplement”. Biotechnology Letters, 18(6), 683-688, 1996.
  • [83] Pejin J, Radosavljević M, Kocić-Tanackov S, Đukić-Vuković A, Mladenović D, Mojović L. “Corrected: The influence of brewers' yeast addition on lactic acid fermentation of brewers' spent grain hydrolysate by Lactobacillus rhamnosus”. Journal on Processing and Energy in Agriculture, 20(4), 193-196, 2016.
  • [84] Jiang M, Chen K, Liu Z, Wei P, Ying H, Chang H. “Succinic acid production by Actinobacillus succinogenes using spent brewer's yeast hydrolysate as a nitrogen source”. Applied biochemistry and biotechnology, 160(1), 244-254, 2010.
  • [85] Thammakiti S, Suphantharika M, Phaesuwan T, Verduyn C. “Preparation of spent brewer's yeast β‐glucans for potential applications in the food industry”. International Journal of Food Science & Technology, 39(1), 21-29, 2004.
  • [86] Liu XY, Wang Q, Cui SW, Liu HZ. “A new isolation method of β- D -glucans from spent yeast Saccharomyces cerevisiae”. Food Hydrocolloids, 22(2), 239-247, 2008.
  • [87] Vieira E, Cunha SC, Ferreira IM. “Characterization of a potential bioactive food ıngredient from inner cellular content of brewer’s spent yeast”. Waste and Biomass Valorization, 10(11), 3235-3242, 2019.
  • [88] Rakin M, Baras J, Vukasinovic M. “The influence of brewer’s yeast autolysate and lactic acid bacteria on the production of a functional food additive based on beetroot juice fermentation”. Food Technology and Biotechnology, 42(2), 109-113, 2004.
  • [89] Pinto M, Coelho E, Nunes A, Brandão T, Coimbra MA. “Valuation of brewers spent yeast polysaccharides: A structural characterization approach”. Carbohydrate Polymers, 116, 215-222, 2015.
  • [90] Lamoolphak W, Goto M, Sasaki M, Suphantharika M, Muangnapoh C, Prommuag C, Shotipruk A. “Hydrothermal decomposition of yeast cells for production of proteins and amino acids”. Journal of Hazardous Materials, 137(3), 1643-1648, 2006.
  • [91] Sosa-Hernández O, Parameswaran P, Alemán-Nava GS, Torres CI, Parra-Saldívar R. “Evaluating biochemical methane production from brewer’s spent yeast”. Journal of industrial microbiology & biotechnology, 43(9), 1195-1204, 2016.
  • [92] Riordan C, Bustard M, Putt R, McHale AP. “Removal of uranium from solution using residual brewery yeast: combined biosorption and precipitation”. Biotechnology Letters, 19(4), 385-388, 1997.
  • [93] Ryu BG, Kim K, Kim J, Han JI, Yang JW. “Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101”. Bioresource Technology, 129, 351-359, 2013.
  • [94] Ryu BG, Kim J, Kim K, Choi YE, Han JI, Yang JW. “High-cell-density cultivation of oleaginous yeast Cryptococcus curvatus for biodiesel production using organic waste from the brewery industry”. Bioresource Technology, 135, 357-364, 2013.
  • [95] Zhang N. Mixotrophic Cultivation of Microalgae for Biomass Production Optimization Using Statistical Methods. MSc Thesis, Clemson University, South Carolina, United States, 2016.
  • [96] Ferraz E, Coroado J, Silva J, Gomes C, Rocha F. “Manufacture of ceramic bricks using recycled brewing spent Kieselguhr”. Materials and Manufacturing Processes, 26(10), 1319-1329, 2011.
  • [97] Russ W. Examples of Special Case Studies in Different Branches. Editors: Oreopoulou, V, Russ, W. Utilization of By-Products and Treatment of Waste in the Food Industry, 259-272, New York, USA, Springer, 2007.
  • [98] Russ W, Mörtel H, Meyer-Pittroff R, Babeck A. “Kieselguhr sludge from the deep bed filtration of beverages as a source for silicon in the production of calcium silicate bricks”. Journal of the European Ceramic Society, 26(13), 2547-2559, 2006.