Asit turuncu II boyasının kitosan ve zirkonyum(IV)-kitosan üzerine adsorpsiyonunun karşılaştırılması

Yaygın olarak kullanılan bir biyopolimer olan kitosanın (Cht)   adsorpsiyon kapasitesini arttırmak amacıyla zirkonyum (IV)-kitosan (Zr(IV)-Cht) kompoziti sentezlenmiş ve asit turuncu II (T-II) sentetik boyası kullanılarak Cht ile adsorpsiyon kapasiteleri karşılaştırılmıştır. Kesikli sistemde yapılan denemelerde Zr(IV) miktarı, çözelti pH’ı, adsorban miktarı, temas süresi ve sıcaklıklığın T-II adsorpsiyonuna olan etkileri incelenmiştir. Langmuir, Freundlich ve Temkin izoterm modelleri denenerek elde edilen deneysel verilere en uygun cevap veren izoterm modelinin Langmuir izoterm modeli olduğu bulunmuştur. Maksimum adsorpsiyon kapasiteleri sırasıyla Cht için 256.41 mg/g ve Zr(IV)/Cht için 666.67 mg/g olarak bulunmuştur. Kinetik veriler yalancı-birinci dereceden ve yalancı-ikinci dereceden kinetik modellerine uygulandığında yalancı-ikinci dereceden kinetik modelinin en uygun olduğu sonucuna varılmıştır. Termodinamik veriler ışığında, T-II adsorpsiyonunun hem Cht, hem de Zr(IV)/Cht için endotermik olarak kendiliğinden gerçekleşen bir işlem olduğu belirlenmiştir. Adsorpsiyon/desorpsiyon denemelerinde yedinci döngü sonunda  Cht’ın adsorpsiyon kapasitesi %65, Zr(IV)-Cht’ın adsorpsiyon kapasitesinin %95 olduğu bulunmuştur. T-II adsorpsiyonu için sentezlenen Zr(IV)-Cht kompoziti yüksek adsorpsiyon kapasitesine sahip, ucuz ve toksik olmayan bir adsorban olarak boya gideriminde kullanılabileceği sonucuna varılmıştır.

Comparison of adsorption of acid orange II dye on chitosan and zirconium(IV)-chitosan

To increase the adsorption capacity of chitosan (Cht), which is an abundant biopolymer, zirconium (IV)-chitosan (Zr(IV)-Cht) composite was synthesized and adsorption capacity was compared with Cht using acid orange II (T-II). Batch studies were conducted to analyze the effect of Zr (IV) loading amount, solution pH, adsorbent dosage, contact time and temperature on T-II adsorption. The best responding isotherm model to the experimental data was found Langmuir adsorption isotherm model by analyzing Langmuir, Freundlich and Temkin isotherm models. The maximum adsorption capacities were found as 256.41 mg/g and 666.67 mg/g for Cht and Zr(IV)-Cht, respectively. Application of kinetic data to the pseudo-first order and pseudo-second order kinetic models, pseudo-second order model was the best-fitted model for the kinetic data. The adsorption process was found endothermic and spontaneously occurred for both Cht and Zr(IV)-Cht. According to adsorption/desorption experiments, after seventh cycle adsorption capacities were found 65% for Cht and 95% for Zr(IV)-Cht. The synthesized Zr(IV)-Cht composite was found as the high adsorption capacity, low-cost and non-toxic material for T-II adsorption and can be used for dye adsorption.

___

  • Luo F, Chen Z, Megharaj M, Naidu R. “One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II”. Journal of Hazardous Materials, 303, 145-153, 2016.
  • Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A. “Adsorption of acid orange II dye by raw and chemically modified Brown macroalga Stoechospermum marginatum”. Chemical Engineering Journal, 192, 67-76, 2012.
  • Nam S, Tratnyek PG. “Reduction of azo dyes with zero-valent iron”. Water Resources, 38(6), 565-571, 1999.
  • Mondal S. “Methods of dye removal from dye house effluent: An overview”. Environmental Engineering Science, 25(3), 383-396, 2008.
  • Gupta VK. “Application of low cost adsorbents for dye removal: A review”. Journal of Environmental Management, 90(8), 2313-2342, 2009.
  • Verma AK, Dash RR, Bhunia P. “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters”. Journal of Environmental Management, 93(1), 154-168, 2012.
  • Sowmya A, Meenakshi S. “Zr(IV) loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate”. International Journal of Biological Macromolecules, 69, 336-343, 2014.
  • Liu Q, Zhang L, Yang B, Huang R. “Removal of fluoride from aqueous solution using Zr(IV) immobilized cross-linked chitosan”. International Journal of Biological Macromolecules, 77, 15-23, 2015.
  • Viswanathan N, Meenakshi S. “Synthesis of Zr(IV) entrapped chitosan biopolymeric matrix for selective flüoride sorption”. Colloids and Surfaces B: Biointerfaces, 72(1), 88-93, 2009.
  • Zhang L, Xia W, Teng B, Liu X, Zhang W. “Zirconium-cross-linked chitosan composite: preparation, characterization and application in adsorption of Cr(VI)”. Chemical Engineering Journal, 229, 1-8, 2013.
  • Liu Q, Hu P, Wang J, Zhang L, Huang R. “Phosphate adsorption from aqueous solutions by Zirconium(IV) loaded cross-linked chitosan particles”. Journal of Taiwan Institue of Chemical Engineers, 59, 311-319, 2016.
  • Zhang L, Hu P, Wang J, Huang R. “Adsorption of amido black 10B from aqueous solutions onto Zr (IV) surface-immobilized cross-linked chitosan/bentonite composite”. 369, 558-566, 2016.
  • Jin X, Yu B, Chen Z, Arocena JM, Thring RW. “Adsorption of Orange II dye in aqueous solution onto surfactant-coated zeolite: Characterization, kinetic and thermodynamic studies”. Journal of Colloid and Interface Science, 435, 15-20, 2014.
  • Luo F, Yang D, Chen Z, Megharaj M,.Naidu R. “One-step gren synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II”. Journal of Hazardous Materials, 303, 145-153, 2016.
  • Inchaurrondo N, Font J, Ramos CP, Haure P. “Natural diotomites: Efficient gren catalyst for Fenton-like oxidation of Orange II”. Aplied Catalysis B: Environmental, 181, 481-494, 2016.
  • Zhang L, Cheng Z, Guo X, Jiang X, Liu R. “Process optimization, kinetics and equilibrium of Orange G and acid Orange 7 adsorpstions onto chitosan/surfactant”. Journal of Molecular Liquids, 197, 353-367, 2014.