Deniz suyundan saf su eldesine yönelik zeolit 4A katkılı polieter blok amid membran hazırlanması ve desalinasyon uygulaması

Bu çalışmada, gözeneksiz zeolit 4A katkılı polieter blok amid membranı hazırlanarak, pervaporasyon tekniği ile tuzlu su ve deniz suyundaki tüm çözünmüş iyonların ve kimyasaların yüksek oranda sudan ayrılması amaçlanmıştır. Bu amaç doğrultusunda, farklı oranlarda zeolit eklenen membranların, önce laboratuvar ortamında hazırlanan tuzlu sular ile, ardından da gerçek deniz suyu ile farklı sıcaklıklarda (30-60 °C) desalinasyonu yapılarak sistem performansı akı ve tuz tutma oranının fonksiyonu olarak değerlendirilmiştir. Ayrıca saflaştırılan suların kimyasal madde içerikleri İndüktif Eş Plazma Kütle Spektrometresi (Perkin Elmer Elan DRC-e ICP-MS) ile analiz edilmiştir. Deneyler sonucunda, NaCl-su çözeltisi ile yapılan saflaştırma işleminde en yüksek akı (3.43 kg/m2. sa.) ve tuz tutma oranı (%99.78) %30 zeolit yüklemeli membran ile elde edilirken, deniz suyu desalinasyonunda %10 zeolit 4A katkılı membran ile diğerlerine oranla daha yüksek akı (4.61 kg/m2. sa.) ve tuz tutma oranı (%99.85)40 °C sıcaklıkta elde edilmiştir. ICP sonuçları değerlendirildiğinde, %10 zeolit katkılı membranın çözünmüş tuzların yanısıra, arsenik, kadmiyum ve civa gibi ağır metallerin sudan ayrılmasında oldukça başarılı olduğu ve tüm element konsantrasyonları değerlendirildiğinde üretilen membran ile saflaştırılan suyun hem sulama suyu hem de içme suyu limit değerlerinden çok daha düşük değerlerde kimyasal içerdiği görülmüştür.

Preparation of a zeolite 4A loaded polyether block amide membrane and usage for seawater desalination

In this study, it was aimed to remove all hydrated ions and chemicals from the seawater by using pervaporation technique. For this purpose, polyether block amide membrane was prepared. The model saline water and the real seawater desalination experiments were performed with temperature ranging from 30 °C to 60 °C using different amount of zeolite loaded membranes. The performance of the experiments was evaluated as function of water flux and salt rejection. The ion concentration of the desalinated water was analyzed using Inductively Coupled Plasma-Mass Spectrometer (Perkin Elmer Elan DRC-e ICP-MS). In conclusion, the highest salt rejection of 99.78% and a flux of 3.43 kg/m2.h were obtained using 30 wt. % of zeolite 4A loaded membrane when the model NaCl-water solution was desalinated at 40 °C. In the case of the real seawater experiments, 10 wt. % zeolite 4A incorporated membrane gave the highest rejection of 99.85% with a flux of 4.61 kg/m2.h at 40 °C. When the ICP analysis was evaluated, it was seen that the 10 wt. % zeolite incorporated membrane was very effective to separate hydrated ions, heavy metals from the seawater. When the all results were considered, contaminant concentration in desalinated water was found to be low to meet with drinking and irrigation water standards.

___

  • Sabine L, Thomas H. “Environmental impact and impact assessment of seawater desalination”. Desalination, 220(1-3), 1-15, 2008.
  • Bart VB, Carlo V. “Distillation vs. membrane filtration: overview of process evolutions in seawater desalination”. Desalination, 143(3), 207-218, 2002.
  • Khawaji AD, Kutubkhanah IK, Jong MW. “Advances in seawater desalination technologies”. Desalination, 221(1-3), 47-69, 2008.
  • Xing Y, Hiroki N, Hiroyuki S, Yukio T, Kazuhiko K, Ryutaro H. “Study of an incrementally loaded multistage flash desalination system for optimum use of sensible waste heat from nuclear power plant”. Journal of Energy Research, 37(14), 1811-1820, 2013.
  • Jane Kucera, Desalination: Water from Water, John Wiley & Sons, Inc., 2014
  • Nur MM, Dimitar P, Andrew GL, “Energy consumption for desalination-A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes” Desalination, 377, 138-151, 2016.
  • Misdan N, Lau WJ, Ismail AF. “Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects”. Desalination, 287, 228-237, 2012.
  • Avlonitis SA, Avlonitis DA, Panagiotidis T. “Experimental study of the specific energy consumption for brackish water desalination by reverse osmosis”. Journal of Energy Research, 36(1), 36-45, 2012.
  • Komgold E, Korin E, Ladizhensky I. “Water desalination by pervaporation with hollow fiber membranes”. Desalination, 107(2), 121-129, 1996.
  • Paul S, Brenden T, Ankita G, Weizhu A, Steven MK. “Pervaporative desalination of water using natural zeolite membranes”. Desalination, 285, 68-72, 2012.
  • Churl HC, Ka YO, Si KK, Jeong GY, Pankaj S. “Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection”. Journal of Membrane Science, 37(1-2), 226-238, 2011.
  • Swenson P, Tanchuk B, Gupta A, An W, Kuznicki SM, “Pervaporative desalination of water using natural zeolite membranes”. Desalination, 285, 68-72, 2012.
  • Nigiz FU, “Preparation of high-performance graphene nanoplate incorporated polyether block amide membrane and application for seawater desalination”, Desalination, 433, 164-171.
  • Xie Z, Hybrid Organic-Inorganic Pervaporation Membranes for Desalination, PhD Thesis, Victoria University, Melbourne, 2012.
  • Muthia E, Christelle Y, David KW, Simon S, Joao CDC. “Microporous Silica Based Membranes for Desalination”. Water, 4(3), 629-649, 2012.
  • Gao A. 2016. “Desalination of high salinity water by membranes”. Doctoral Dissertation, University of Waterloo, Canada.
  • Zwijnenberg HJ, Koops GH, Wessling M. “Solar driven membrane pervaporation for desalination processes”. Journal of Membrane Science, 250(1-2), 235-246, 2005.
  • Xie Z, Derrick N, Hoang M, Duong T, Gray S, “Separation of aqueous salt solution by pervaporation through hybrid organic-inorganic membrane: Effect of operating conditions”. Desalination, 273(1), 220-225. 2011.
  • Naim M, Elewa M, El-Shafei A. “Desalination of simulated seawater by purge-air pervaporation using an innovative fabricated membrane”. Water Science&Technology, 72(5), 785-793, 2015.
  • Chaudhri SG, Rajai BH, Singh PS. “Preparation of ultra-thin poly(vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater”. Desalination, 367, 272-284, 2015.
  • Cho CH, Oh KY, Kim SK, Yeo JG, Sharma P. “Pervaporative seawater desalination using NaA zeolite membrane: Mechanisms of high water flux and high salt rejection”. Journal of Membrane Science, 371(1-2), 226-238, 2011.
  • Drobek M, Yacou C, Motuzas J, Julbe A, Ding L, Dinizda Costa JC. “Long term pervaporation desalination of tubular MFI zeolite membranes”. Journal of Membrane Science, 415-416, 816-823, 2012.
  • An W, Zhou X, Liu X, Chai PW, Kuznicki T, Kuznicki SM. “Natural zeolite clinoptilolite-phosphate composite membranes for water desalination by pervaporation”. Journal of Membrane Science, 470, 431-438, 2014.
  • Khajavi S, Jansen JC, Kapteijn F. “Production of ultra pure water by desalination of seawater using a hydroxy sodalite membrane”. Journal of Membrane Science, 356(1-2), 52-57, 2010.
  • Xu K, Feng B, Zhou C, Huang A. “Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination”. Chemical Engineering Science, 146, 159-165, 2016.
  • Bin L, Wu Z, Genggeng Q, Sengseng L, Qian N, Yuxuan L, Bing C, Kai P. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications”. Journal of Materials Chemistry A, 3 (9), 5140-5147, 2015.
  • Hegab HM, Zou L, Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification”. Journal of Membrane Science, 484, 95-106, 2015.
  • Nigiz FU, Veli S, Hilmioglu ND. “Deep purification of seawater using a novel zeolite 3A incorporated polyether-block-amide composite membrane”. Separation and Purification Technology, 188, 90-97, 2017.
  • Nigiz FU, Dogan H, Hilmioglu ND. “Pervaporation of ethanol/water mixtures using clinoptilolite and 4A filled sodium alginatemembranes”. Desalination, 300, 24-31, 2012.
  • Nigiz FU, Hilmioglu, ND. “Fabrication of a novel polyhedral oligomeric silsesquioxanes/polyether block amide nano-hybrid membrane for pervaporative separation of model fuel butanol”. Journal of Applied Polymer Science, 134(34), 45211, (2017.
  • Sudhakar H, Venkata Prasad C, Sunitha K, Chowdoji Rao K, Subha MCS, Sridhar S. “Pervaporation separation of IPA-water mixtures through 4A zeolite-filled sodium alginate membranes”. Journal of Applied Polymer Science, 121(5), 2717-2725, 2011.
  • Cao Z, Cao X, Sun L, He Y. “Pervaporation Dehydration of Aqueous Ethanol Solution with Zeolite-Filled Poly (vinyl Alcohol) Composite Membranes”. Advanced Materials Research, 239, 1331-1334, 2011.
  • Tong-Hu X, Xiao-Li X, Hai-Jiao Q. “Zeolite 4A incorporated polymeric membranes for pervaporation separation of methanol-methyl acetate mixture”. Journal of Inorganic and Organometallic Polymers, 21(4), 816-822, 2011.