Öğretmen Yetiştirme Üzerine Bir Model Önerisi: STEM Öğretmen Enstitüleri Eğitim Modeli

Bu çalışmanın amacı, öğretmenlerin STEM eğitimiyle ilgili mesleki gelişimlerini sağlamaya yönelik bir öğretim modeli önerisinde bulunmaktır. Çalışma kapsamında, oluşturulan STEM eğitimi öğretmen modeline “STEM Öğretmen Enstitüleri Eğitim Modeli (SÖEEM)” adı verilmiştir. Araştırmanın çalışma grubunu farklı branşlarda görev yapmakta olan 40 öğretmen oluşturmuştur. Araştırma nitel araştırma yöntemlerinden özel durum çalışması desenine uygun olarak tasarlanmıştır. SÖEEM modelinin ortaya konulma sürecinde adımlarının belirlenmesi için doküman analizi, görüşme ve ders planı incelemesi yapılmıştır. Doküman incelemeleri sonucunda, SÖEEM modelinin sekiz aşamadan oluştuğu bulunmuştur. Görüşmeler sonucunda, öğretmenler STEM eğitimi konusunda kendilerini yeterli hissetmedikleri, lisans eğitimlerinin yeterli olmadığını, ders planı hazırlarken zorlandıklarını ve STEM okuryazarı olmadıklarını düşünmektedir. Dahası, öğretmenler STEM eğitimleri sırasında problemler yaşadıklarını da ifade etmiştir. Ders planı inceleme sonucunda ise, öğretmenler hazırladıkları ders planlarında özellik de STEM alanlarını entegre etme konusunda zorlandıkları tespit edilmiştir. Elde edilen bu sonuçlar ışığında, STEM Öğretmen Enstitü Eğitim Modeli tasarlanmıştır. Bu model ile öğretmen eğitimleri için ortak bir mesleki gelişim programının geliştirilmesi hedeflenmiştir.

A Model Proposal for Teacher Training: STEM Teacher Institutes Training Model

The purpose of the research was to present an educational model for professional development in STEM education. The STEM professional development model was called the “STEM Teacher Institutes Education Model (STIEM)”. The study group consisted of 40 teachers from different areas. The research was designed in accordance with the case study design among the qualitative research methods. Document analysis, interview, and lesson plan analysis were carried out to determine the steps in the process of revealing the STIEM model. As a result of document analysis, it was comprehended that the STIEM model consisted of eight stages. As a result of the interviews, the teachers thought that they did not feel sufficient about STEM education, that their undergraduate education was not sufficient, that they had difficulty in preparing lesson plans, and that they were not STEM literate. Moreover, the teachers stated that they had problems during STEM training. As a result of the lesson plan analysis, it was concluded that the teachers had difficulty in integrating especially STEM fields into their lesson plans. The aim of the model to develop a common professional development program for teacher training.

___

  • Aysal, N. (2005). Anadolu'da aydınlanma hareketinin doğuşu: köy enstitüleri. Ankara Üniversitesi Türk İnkılâp Tarihi Enstitüsü Atatürk Yolu Dergi, 35-36, 267-282.
  • Balcı, A. (2016). Sosyal bilimlerde araştırma yöntem teknik ve ilkeleri. Ankara: Pegem Akademi Yayıncılık
  • Braga, J. L. (1972). Teacher role perception. Journal of Teacher Education, 23(1), 53-57.
  • Cantrell, P., Pekca, G., & Ahmad, I. (2006). The effects of engineering modules on student learning in middle school science classrooms. Journal of Engineering Education, 95(4), 301-309. https://doi.org/10.1002/j.2168-9830.2006.tb00905.x
  • Çakır, Z., Yalçın, S. A., & Yalçın, P. (2019). Montessori yaklaşımı temelli STEM etkinliklerinin okul öncesi öğretmen adaylarının yaratıcılık becerilerine etkisi. Journal of the International Scientific Research, 4(2), 392-409. https://doi.org/10.21733/ibad.548456
  • Çepni, S., & Ormancı, Ü. (2018). Geleceğin dünyası. S. Çepni (Eds.), Kuramdan uygulamaya STEM+A+E eğitimi (pp. 1-37). Ankara: Pegem Yayıncılık.
  • Çorlu, M. S., Capraro, R. M., & Capraro, M. M. (2014). Introducing STEM education: implications for educating our teachers for the age of innovation. Eğitim ve Bilim, 39(171), 74 - 85.
  • Dass, P. M. (2001). Implementation of instructional innovations in K‐8 science classes: Perspectives of in-service teachers. International Journal of Science Education, 23, 969–984. https://doi.org/10.1080/09500690010025021
  • Dick, W., & Carey, L. (1996). The systematic design of instruction. USA: Harper Collins College Publishers.
  • Du, W., Liu, D., Johnson, C.C., Sondergeld, T. A., Bolshakova, V.L.J., & Moore, T.J. (2019). The impact of integrated STEM professional development on teacher quality. School Science and Mathematics, 119, 105–114. https://doi.org/10.1111/ssm.12318
  • Ejiwale, J. (2013). Barriers to successful implementation of STEM education. Journal of Education and Learning, 7(2), 63-74. https://doi.org/10.11591/edulearn.v7i2.220
  • Felix, A., & Harris, J. (2010). A project-based, STEM integrated: Alternative energy team challenge for teachers. The Technology Teacher, 69(5), 29-34.
  • Freeman, B. (2013). Science, mathematics, engineering and technology (STEM) in Australia: Practice, policy and programs. Melbourne: Australian Council of Learned Academies.
  • Gencer, A. S., Doğan, H., Bilen, K., & Can, B. (2019). Integrated STEM education models. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 45, 38-55.
  • Goodnough, K., Pelech, S., & Stordy, M. (2014). Effective professional development in STEM education: the perceptions of primary/elementary teachers. Teacher Education and Practice, 27(2/3), 402-424.
  • Gökdere, M., & Çepni, S. (2003). Üstün yetenekli çocuklara verilen değerler eğitiminde öğretmenin rolü. Değerler Eğitimi Dergisi, 1(2), 93-107.
  • Guzey, S.S., Tank, K., Wang, H., Roehrig, G., & Moore, T. (2014). A High-quality professional development for teachers of grades 3–6 for implementing engineering into classrooms. School Science and Mathematics, 114(3), 139-149. https://doi.org/10.1111/ssm.12061
  • Haynes, M.M., & Santos, A.D. (2007). Effective teacher professional development: Middle school engineering content. International Journal of Engineering Education, 23(1), 24-29.
  • Hibpshman, T. L. (2007). Analysis of transcript data for mathematics and science teachers. Frankfort, Kentucky: Education Professional Standards Board.
  • Jho, H., Hong, O., & Song, J. (2016). An analysis of STEM/STEAM teacher education in Korea with a case study of two schools from a community of practice perspective. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1843-1862. https://doi.org/10.12973/eurasia.2016.1538a
  • Johnson, C. C., & Fargo, J. D. (2010). Urban school reform enabled by transformative professional development: Impact on teacher change and student learning of science. Urban Education, 45(1), 4–29. https://doi.org/10.1177/0042085909352073
  • Jon, J. E., & Chung, H. I. (2013). STEM report - republic of Korea. Melbourne: Australian Council of Learned Academies.
  • Jones, M. G., & Carter, G. (2007). Science teacher attitudes and beliefs. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1067-1104). Mahwah, NJ: Lawrence Erlbaum Associates
  • Katehi, L., Pearson, G., & Feder, M. (2009). The status and nature of K-12 engineering education in the United States. The Bridge, 39(3), 5-10.
  • Lee, J. W., Park, H. J., & Kim, J. B. (2013). Primary teachers' perception analysis on development and application of STEAM education program. Journal of Korean Elementary Science Education, 32(1), 47-59. https://doi.org/10.15267/keses.2013.32.1.047
  • McPherson, S. & Anid, N.M. (2014). Preparing STEM Teachers for K-12 Classrooms: Graduate Certificate Evaluation and Innovation. [Available online at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6891035] Retrieved on June 09, 2019.
  • Kennedy, M. M., Ahn, S., & Choi, J. (2008). The value added by teacher education. In M. Cochran-Smith, S. FeimanNemser, and J. McIntyre (Eds), Handbook of research on teacher education: enduring issues in changing contexts (pp. 1249-1273) Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
  • Merriam, S.B. (2009). Qualitative research. A guide to design and implementation (2th ed.). San Francisco, CA: Jossey-Bass.
  • Miles, M.B., & Huberman, A.M. (1994). Qualitative data analysis (2th ed.). Thousand Oaks, CA: Sage.
  • Milner-Bolotin, M. (2018) Evidence-based research in STEM teacher education: From theory to practice. Frontiers in Education, 3(92), 1-9. https://doi.org/10.3389/feduc.2018.0009
  • Morrison, J. S. (2006). TIES STEM Education Monograph Series: Attributes of STEM Education. [Available online at: https://www.partnersforpubliced.org/uploadedFiles/TeachingandLearning/Career_and_Technical_Education/Attributes%20of%20STEM%20Education%20with%20Cover%202%20.pdf] Retrieved on April 01, 2019.
  • Nagdi, M.E., Leammukda, F., & Roehrig, G. (2018). Developing identities of STEM teachers at emerging STEM schools. International Journal of STEM Education, 5(36), 2-13. https://doi.org/10.1186/s40594-018-0136-1
  • National Research Council. (2011). Successful STEM education: A workshop summary. Washington, DC: National Academies Press.
  • Noh, H. J., & Paik, S. H. (2014). STEAM experienced teachers' perception of STEAM in secondary education. Journal of Learner-Centered Curriculum and Instruction, 14(10), 375-402.
  • Ostler, E. (2012). 21st century STEM education: a tactical model for long-range success. International Journal of Applied Science and Technology, 2(1), 28-33.
  • Pang, J., & Good, R. (2000). A review of the integration of science and mathematics: Implications for further research. School Science and Mathematics, 100(2), 73–82. https://doi.org/10.1111/j.1949-8594.2000.tb17239.x
  • Patton, M. (2002). Qualitative evaluation and research methods. Beverly Hills, CA: SAGE.
  • President’s Council of Advisors on Science and Technology. (2010). Prepare and inspire: K–12 education in science, technology, engineering, and math (STEM) for America’s future. Washington, DC: Author. [Available online at: http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf] Retrieved on June 29, 2019.
  • Reeve, E. (2015). STEM thinking!. Technology and Engineering Teacher, 74(4), 8–6.
  • Ring, E.A., Dare, E.A., Crotty, E.A., & Roehrig, G.H. (2017). The evolution of teacher conceptions of stem education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444-467. https://doi.org/10.1080/1046560X.2017.1356671
  • Rinke, C. R., Gladstone-Brown, W., Kinlaw, C. R., & Cappiello, J. (2016). Characterizing STEM teacher education: Affordances and constraints of explicit STEM preparation for elementary teachers. School Science and Mathematics, 116(6), 300–309. https://doi.org/10.1111/ssm.12185
  • Silverman, D. (2013). Doing qualitative research: A practical handbook. London: SAGE Publications.
  • Stinson, K., Harkness, S., Meyer, H., & Stallworth, J. (2009). Mathematics and science integration: models and characterizations. School Science and Mathematics, 109(3), 153–161. https://doi.org/10.1111/j.1949-8594.2009. tb17951.x
  • Stohlmann, M., Moore, T.J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 28-34. https://doi.org/10.5703/1288284314653
  • Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching, 37(9), 963–980. https://doi.org/10.1002/1098-2736(200011)37:9<963::AID-TEA6>3.0.CO;2-0
  • Türk, N., Kalaycı, N., & Yamak, H. (2018). New trends in hinger education the globalizing World: STEM in teacher education. Universal Journal of Educational Research 6(6), 1286-1304. https://doi.org/10.13189/ujer.2018.060620
  • U.S. Department of Education (2010). A Blueprint for Reform: The Reauthorization of the Elementary and Secondary Education Act. [Available online at: https://www2.ed.gov/policy/elsec/leg/blueprint/blueprint.pdf] Retrieved on May 15, 2019.
  • Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research (J-PEER), 1(2), 1-13. https://doi.org/10.5703/1288284314636
  • Yıldırım, A., & Şimşek, H. (2011). Sosyal bilimlerde nitel araştırma yöntemleri. İstanbul: Seçkin Yayınları.
  • Yıldırım, B. (2018a). Research on teacher opinions on STEM practices. Eğitim Kuram ve Uygulama araştırmaları Dergisi, 4(1), 42-53.
  • Yıldırım, B. (2018b). 2023, 2053 VE 2071 hedefleri için STEM eğitim raporu. [Çevrim-içi: http://bystemegitimi.com/img/VSgmdXhL.pdf], Erişim tarihi: 30.06.2019.
  • Yıldırım, B. (2017). Fen eğitiminde STEM. M. P. Demirci Güler (Ed.). Fen bilimleri öğretimi (pp. 283-295). Ankara: Pegem Akademi.
  • Yıldırım, B., & Selvi, M. (2016). Examination of the effects of STEM education integrated as a part of science, technology, society and environment courses. Journal of Human Sciences, 13(3), 3684-3695. https://doi.org/10.14687/jhs.v13i3.3876
  • Yıldırım, B., & Şahin-Topalcengiz, E. (2019). STEM pedagogical content knowledge scale (STEMPCK): A validity and reliability study. Journal of STEM Teacher Education, 53(2), 1-20. https://ir.library.illinoisstate.edu/jste/vol53/iss2/2
  • Yin, R. K. (2017). Case study research and applications: Design and methods. Los Angeles: SAGE.
Pamukkale Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1301-0085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1996
  • Yayıncı: -
Sayıdaki Diğer Makaleler

Çocukların Eğitiminde Merkezi Sınav Başarısı ile İlgili Dersler Daha mı Önemli? Aile Görüşü ve İlişkili Faktörler

Gülfem Dilek Yurttaş Kumlu, Rahime Çobanoğlu

Nesneleştirilmiş Beden Bilinci Ölçeği-Genç Formunun Türkçeye Uyarlanarak Kendini Nesneleştirmenin Sosyal Medya Kullanımı ve Beğenilme Arzusu Arasındaki İlişkide Aracı Rolünün İncelenmesi

Sevgi OZGUNGOR, Ahu ARICIOĞLU

Matematiksel Doyum Ölçeğinin (MDÖ) Geliştirilmesi: Geçerlik ve Güvenirlik Çalışması

Deniz KAYA

Fen Bilgisi Öğretmen Adaylarının Türkiye İstatistiki Bölge Birimlerine Göre Evrensel Fen Okuryazarlık Düzeyi

Şendil CAN, Cüneyd ÇELİK

Rehberlik ve Psikolojik Danışmanlık Programı Öğrencilerinin Özel Eğitimde Öz-Yeterlik Algıları

Nesrin SÖNMEZ, Melike KOÇYİĞİT ÖZYİĞİT, Ömür GÜREL SELİMOĞLU

Üniversite Öğrencilerinin Bilişsel Duygu Düzenlemelerinde Çocukluk Örselenmeleri ve Otomatik Düşüncelerin Yordayıcı Rolü

HASAN SARICI, Özlem TAGAY

Kariyer Olgunluğunda Cinsiyet Farklılıkları: Meta Analiz Çalışması

Ersoy ÇARKIT, Feride BACANLI

Açık ve Uzaktan Öğrenme Ders Kitaplarında Bulunması Gereken Özellikler: Sistematik Literatür Taraması

Mehmet YAVUZ, Engin KURŞUN, Mehmet HASANÇEBİ

Öğretmen Yetiştirme Üzerine Bir Model Önerisi: STEM Öğretmen Enstitüleri Eğitim Modeli

Bekir YILDIRIM

Kavram Karikatürlerinin Fen Eğitimi Dersi Akademik Başarısı Üzerindeki Etkisini Belirlemeye Yönelik Bir Meta-Analiz Çalışması

Gürol YOKUŞ, Burak AYÇİÇEK