High school students’ conceptions about energy in chemical reactions

Bu çalışmanın amacı öğrencilerin ısı ve sıcaklık, endotermik-ekzotermik tepkimeler, yanma tepkimeleri, bağ enerjisi, entalpi, kimyasal tepkimelerde kararlılık ve kalorimetre konularını kapsayan kimyasal tepkimelerde enerji ünitesiyle ilgili kavram yanılgılarını araştırmaktır.Örneklem 222, 10.sınıf öğrencisinden oluşmaktadır. Bu çalışmada hem nitel hem de nicel yöntembilim kullanılmıştır. Öğrencilerin konuyla ilgili kavramalarını ölçmek için her biri 5 seçenekli olmak üzere 20 sorudan oluşan çoktan seçmeli bir test geliştirilmiştir. Bu kavram testi öğrencilerin literatürde kimyasal tepkimelerde enerji konusuyla ilgili kavram yanılgıları ve öğrenme zorlukları göz önünde bulunarak geliştirilmiştir. Ek olarak, öğrencilerin konuyu anlamalarıyla ilgili daha derin bilgi elde etmek amacıyla yarı yapılandırılmış mülakatlar yapılmıştır. Sonuçlar göstermiştir ki kimyasal tepkimelerde enerji konusu, pek çok bölümünde öğrencilerin zorlandığı ve birçok kavram yanılgısına sahip olduğu bir ünitedir. Bulunan bazı kavram yanılgıları literatürdeki bulgularla benzerlik gösterirken, bazıları da çelişmektedir. Ayrıca, konuyla ilgili yeni kavram yanılgıları da tespit edilmiştir.

Lise öğrencilerinin kimyasal tepkimelerde enerji konusundaki kavramaları

The aim of this study is to investigate students’ understanding of the energy concept in chemical reactions including heat and temperature, endothermic-exothermic reactions, combustion reactions, bond energy, enthalpy, stability in chemical reactions and calorimeter. The sample consisted of 222, 10th grade students. Both qualitative and quantitative methodology was used for this investigation. A twenty-item multiple choice test was developed about the topic to measure the students’ understandings. This concept test was prepared based on students’ conceptual difficulties and misconceptions related to the energy in chemical reactions found in the literature. In addition, semi structured interviews were conducted to get deep knowledge about students’ perceptions. Results showed that for most parts, energy in chemical reactions is a difficult topic for high school students and they had various misconceptions. While some of the misconceptions were parallel to the literature findings, some of them contradicted with it. Also, some novel misconceptions were detected.

___

  • Barker, V., & Millar, R. (2000). Students’ reasoning about basic chemical thermodynamics and chemical bonding: what changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 22, 1171–1200.
  • Boo, H. (1998). Students’ understandings of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35(5), 569–581.
  • BouJaoude, S.B. (1991). A study of the nature of students’ understandings about the concept of burning. Journal of Research in Science Teaching, 28 (8), 689 – 704.
  • Ceylan, E. (2004). Effect of instruction using conceptual change strategies on students conceptions of chemical reactions and energy. Unpublished Master Thesis, Middle East Technical University, Ankara, Turkey.
  • Cohen, I., & Ben-Zvi, R. (1982). Chemical energy: a learning package. Journal of Chemical Education, 59, 655–658.
  • De Vos, W., & Verdonk, A. (1986). A new road to reactions. Part 3: Teaching the heat effect of reactions. Journal of Chemical Education, 63, 972–974.
  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas, London and New York: Routledge.
  • Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63, 221–230.
  • Erickson, G. L. (1980). Children’s viewpoints of heat: A second look. Science Education 64, 323–336.
  • Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its consequences for teaching. Science Education, 66 (4), 623-633.
  • Greenbowe, T. J., & Meltzer, D. E. (2003). Student learning of thermochemical concepts in the context of solution calorimetry. International Journal of Science Education, 25, 779–800.
  • Harrison A.G., Grayson, D. J., & Treagust, D. F. (1999). Investigating a grade 11 student’s evolving conceptions of heat and temperature. Journal of Research in Science Teaching, 36 (1), 55–87.
  • Jacobs, G. (1989). Word usage misconceptions among first-year university physics students. International Journal of Science Education, 11, 395–399.
  • Johnstone, A. H., Macdonald, J. J., & Webb, G. (1977). Misconceptions in school thermodynamic. Physics Education, 12, 248–251.
  • Kesidou, S., & Duit, R. (1993). Students’ conceptions of the second law of thermodynamics—An interpretative study. Journal of Research in Science Teaching, 30, 85–106.
  • Niaz, M. (2000). A framework to understand students’ differentiation between heat energy and temperature and its educational implications. Interchange 31, 1–20.
  • Niaz, M. (2006). Can the study of thermochemistry facilitate students’ differentiation between heat energy and temperature? Journal of Science Education and Technology, 15 (3), 269-276.
  • Paik, S. H., Cho, B. K., & Go, Y. M. (2007). Korean 4- to 11-year-old student conceptions of heat and temperature. Journal of Research in Science Teaching, 44 (2), 284–302.
  • Thomas P.L., & Schwenz, R.W. (1999). College physical chemistry students’ conceptions of equilibrium and fundamental thermodynamics. Journal of Research in Science Teaching, 35, 1151–1160.
  • Yeo, S., & Zadnik, M. (2001). Introductory thermal concept evaluation: Assessing students’ understanding. The Physics Teacher, 39, 496–50.