Yüksek Kazançlı Geniş Bantlı Horn Anten ile Tünel Tespiti

Günümüzde anten tabanlı birçok sensör kullanılmakta olup, bu anten tabanlı sensörler ile farklı alanlarda tespit ve ölçüm yapılabilmektedir. Bu çalışmada toprak altındaki tünel ve boşluk tespiti için yüksek kazançlı geniş bantlı horn anten tasarlanmıştır. Tasarımın simülasyonu için elektromanyetik simülasyon programından faydalanılmıştır. Yapmış olduğumuz çalışmada kum malzemesi olarak simülasyon programının kütüphanesinden sandy soil materyali referans alınmıştır. İlk olarak horn antenlerin altına kum zemin yerleştirilmiş ve simüle edilmiştir. Ardından kum zeminde bir tünel açılmış ve elektromanyetik simülasyon programı kullanılarak simüle edilmiştir. Yapılan simülasyonların sonucunda S2,1 saçılma parametreleri kıyaslanarak tünelin konumu belirlenmiştir. Bu çalışma ileriki süreçlerde geliştirilebilir ve farklı anten tabanlı sensör çalışmalarına örnek olabilir.

Tunnel Detection with High-Gain WideBand Horn Antenna

Nowadays, many antenna based sensors are used, these antenna based sensors can be done detection and measurement in different areas. In this study, the high gain wideband horn antenna is designed for tunnel and space detection under the ground. Electromagnetic simulation program was used to simulate the design. Sandy soil material is taken as reference from the library of the simulation program as sand material. At first, the sand ground is placed under the horn antennas and simulated. Then, a tunnel was opened in the sand ground and simulated by using electromagnetic simulation program. As a result of the simulations, the position of the tunnel was determined by comparing the S2.1 scattering parameters. This work can be developed in the future and can be an example of different antenna based sensor studies.

___

  • Referans[1] Elektrikport, https://www.elektrikport.com/haber-roportaj/antenler-ve-cesitleri/16763#ad-image-0, Yıldızlı Proje Danışmanlık ve Eğitim, erişim tarihi: 05.05.2019
  • Referans[2] BALANİS, CA. Antenna Theory Analysis and Design. 2. Baskı. New York: John Wiley & Sons; 1997.
  • Referans[3] Johnson, R. C., Ecker, H. A., & Hollis, J. S. Determination of far-field antenna patterns from near-field measurements. Proceedings of the IEEE 1973; 61(12): 1668-1694.
  • Referans[4] Huang, Y., Boyle, K. Antennas: From Theory to Practice. 1. Baskı. United Kingdom: John Wiley & Sons; 2008.
  • Referans[5] Yeh, M. H. (2004). U.S. Patent No. 6,778,140. Washington, DC: U.S. Patent and Trademark Office.
  • Referans[6] Elboushi, A., & Sebak, A. MMW sensor for hidden targets detection and warning based on reflection/scattering approach. IEEE Transactions on Antennas and Propagation 2014; 62(9): 4890-4894.
  • Referans[7] Van Genechten, F. (2000). U.S. Patent No. 6,114,956. Washington, DC: U.S. Patent and Trademark Office.
  • Referans[8] Perez, D., Banerjee, D., Kwan, C., Dao, M., Shen, Y., Koperski, K., ... & Li, J. Deep learning for effective detection of excavated soil related to illegal tunnel activities. In 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON) (pp. 626-632). IEEE, New York-USA, October 2017.
  • Referans[9] Monte, L. L., Erricolo, D., Soldovieri, F., & Wicks, M. C. Radio frequency tomography for tunnel detection. IEEE Transactions on Geoscience and Remote Sensing 2009; 48(3): 1128-1137.
  • Referans[10] Peterie, S., Miller, R., Morton, S., Wang, Y., Sloan, S., Moran, M., & Cudney, H. Tunnel detection using SH-wave diffraction imaging. In SEG Technical Program Expanded Abstracts 2016; (pp. 5006-5010). Society of Exploration Geophysicists.
  • Referans[11] Morton, S. L., Peterie, S. L., Ivanov, J., Miller, R. D., & Sloan, S. D. Joint interpretation of multicomponent surface-wave data for tunnel detection. In SEG Technical Program Expanded Abstracts 2017; (pp. 5458-5464). Society of Exploration Geophysicists.