Hindi Kesimhanesi Atıksuyunda Fotokatalitik Arıtma ve Taguchi Metodu ile Optimizasyon

Heterojen fotokataliz, kimyasal oksijen ihtiyacı (KOİ), azot ve fosfor gibi yüksek seviyede organik kirleticiler içeren kanatlı endüstrisinden ham hindi kesimhanesi atık sularının arıtımında umut verici yeşil bir teknoloji olup arıtım potansiyeli şimdiye kadar yeterince incelenmemiştir. Bu çalışmada, hindi kesimhanesi atık suyunun fotokatalitik bozunması, Taguchi yöntemine dayalı bir yanıt yüzeyi metodolojisi (RSM) uygulanarak incelenmiştir. Bu amaçla, kritik çalışma parametreleri; fotokatalizör konsantrasyonu (0,5-3 g/L, A), pH (2-10, B), hidrojen peroksit (H2O2) konsantrasyonu (0-20 mmol/L, C), lamba türü (UVA, UVC, D) ve katalizör tipi (TiO2, ZnO, E) optimize edilmiştir. Bu deneysel faktörler karışık seviyelerde (43 22) ele alınmış ve L16 testleri uygulanarak çalışma parametreleri optimize edilmiştir. ANOVA sonuçlarına göre katalizör ve H2O2 konsantrasyonu ile pH parametreleri atık sudan KOİ gideriminde en önemli etkiye sahiptir. Optimum koşullar şu şekilde elde edilmiştir: başlangıç katalizör dozu 0,5 g/L (Seviye 1), pH 2 (Seviye 1), H2O2 konsantrasyonu 10 mmol/L (Seviye 3), lamba tipi UVA (Seviye 1) ve katalizör tipi ZnO (Seviye 2). Bu şartlar altında deneysel ve tahmini KOİ giderim verimleri sırasıyla %62 ve %63 olarak elde edilmiştir. Ayrıca yapılan çalışmada, işletme maliyetini oluşturan en önemli faktör elektrik enerjisi tüketimi olurken kimyasal ve elektrik enerjisi maliyeti optimum koşullar altında 1,315 TL ve 32,325 TL olarak elde edilmiştir.

Photocatalytic Treatment of Turkey Slaughterhouse Wastewater and Optimization by Taguchi Method

Heterogeneous photocatalysis is a promising green technology in the treatment of raw turkey slaughterhouse wastewater from the poultry industry, which contains high levels of organic pollutants such as chemical oxygen demand (COD), nitrogen and phosphorus, and its treatment potential has not been adequately studied until now. In this work, the photocatalytic degradation of turkey slaughterhouse wastewater was studied by applying a response surface methodology (RSM) based on Taguchi method. For this purpose, critical operating parameters; photocatalyst concentration (0,5-3 g/L, A), pH (2-10, B), hydrogen peroxide (H2O2) concentration (0-20 mmol/L, C), lamp type (UVA, UVC, D), and catalyst type (TiO2, ZnO, E) were optimized. These experimental factors were handled in mixed levels (43 22), and operation parameters were optimized by the application of L16 tests. According to ANOVA results, catalyst and H2O2 concentration and pH parameters have the most important effects on COD removal from wastewater. Optimum conditions were obtained as: initial catalyst dosage of 0,5 g/L (Level 1), pH of 2 (Level 1), H2O2 concentration of 10 mmol/L (Level 3), lamp type as UVA (Level 1) and catalyst type as ZnO (Level 2). Under these conditions, experimental and estimated COD removal efficiencies were obtained as 62% and 63%, respectively. In addition, in the study, electrical energy consumption is the most significant factor that creates the operating cost, while the chemical and electrical energy costs are 1,315 TL and 32,325 TL under optimum conditions.

___

  • Abdelhay A., Othman AA., Absoul A. Treatment of slaughterhouse wastewater using high-frequency ultrasound: optimization of operating conditions by RSM. Environmental Technology 2020; 42(26):4170-4178.
  • Adar E. The removal of Astrazon Black MBL with an innovative adsorbent: Optimization of operating parameters with Taguchi method. Pamukkale University Journal of Engineering Sciences 2021; 27(6):729-736.
  • APHA, Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), Washington, DC, USA, 2005.
  • Asha RC., Vishnuganth MA., Remya N., Selvaraju N., Kumar M. Livestock Wastewater Treatment in Batch and Continuous Photocatalytic Systems: Performance and Economic Analyses. Water, Air, & Soil Pollution 2015; 226:132.
  • Ayare SD., Gogate PR. Sonophotocatalytic oxidation based treatment of phthalocyanine pigment containing industrial wastewater intensified using oxidising agents. Separation and Purification Technology 2020; 233:115979.
  • Azrina Yaakob M., Maya Saphira Radin Mohamed R., Al-Gheethi A., Tun Hussein Onn Malaysia U., Shiun Lim J., Shin Ho W., Klemeˇs JJ., Ali Saeed Al- Gheethi A., Hashim Mohd Kassim A. Characteristics of chicken slaughterhouse wastewater. Chemical Engineering Transactions 2018; 63:637-642.
  • Bakar JA., Mohamed RMSR., Baker MBR., Al-Gheethi AAS., Fitriani N. Small-scale chicken slaughterhouse industries: Production and its effluent quality characteristics. Pollution Research 2019; 38: S43-S48.
  • Baker BR., Mohamed R., Al-Gheethi A., Aziz HA. Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review. Journal of Dispersion Science and Technology 2020; 42(6): 880-899.
  • Başbuğ Çancı M., Kılıç M. Treatment of Rose Processing Wastewater by Sunlight/TiO2 Photocatalysis Process. Bilge International Journal of Science and Technology Research 2020; 4(1):1-6.
  • Basitere M., Williams Y., Sheldon S., Ntwampe, SKO., De Jage D., Dlangamandla, C. Performance of an expanded granular sludge bed (EGSB) reactor coupled with anoxic and aerobic bioreactors for treating poultry slaughterhouse wastewater. Water Practice and Technology 2016; 11(1):86-92.
  • Bazrafshan E., Mostafapour FK., Soori MM., Mahvi AH. Application of combined chemical coagulation and electrocoagulation process to carwash wastewater treatment. Fresenius Environmental Bulletin 2012; 21(9a):2694–2701.
  • Bhatia V., Dhir A., Ray AK. Photocatalytic degradation of atenolol with graphene oxide/zinc oxide composite: Optimization of process parameters using statistical method. Journal of Photochemistry & Photobiology, A: Chemistry 2021;409:113136.
  • Bozkurt Çırak B., Caglar B., Kılınç T., Morkoç Karadeniz S., Erdoğan Y., Kılıç S., Kahveci E., Ekinci AE., Çırak Ç. Synthesis and characterization of ZnO nanorice decorated TiO2 nanotubes for enhanced photocatalytic activity. Materials Research Bulletin 2019; 109:160–167.
  • Bukhari K., Ahmad N., Sheikh IA., Akram TM. Effects of Different Parameters on Photocatalytic Oxidation of Slaughterhouse Wastewater Using TiO2 and Silver-Doped TiO2 Nanoparticles. Polish Journal of Environmental Studies 2019; 28(3):1591-1600.
  • Bustillo-Lecompte CF., Ghafoori S., Mehrvar M. Photochemical degradation of an actual slaughterhouse wastewater by continuous UV/H2O2 photoreactor with recycle. Journal of Environmental Chemical Engineering 2016; 4:719–732.
  • Chong MN., Jin B., Chow CWK., Saint C. Recent developments in photocatalytic water treatmenttechnology: A review. Water Research, 2010; 44:2997-3027.
  • Cui H., Yu J., Zhu X., Cui Y., Ji C., Zhang C., Xue J., Jia X., Qin S., Li R. Advanced treatment of chicken farm flushing wastewater by integrating Fenton oxidation and algal cultivation process for algal growth and nutrients removal. Journal of Environmental Management 2021; 298:113543.
  • Daneshvar N., Khataee AR., Rasoulifard MH., Pourhassan M. Biodegradation of dye solution containing Malachite Green: Optimization of effective parameters using Taguchi method. Journal of Hazardous Materials 2007;143(1-2):214-219.
  • Doğdu Okçu G., Ökten H.E., Yalçuk A. Fotobiyokataliz Yöntemi Kullanılarak Pestisit Giderimi-Derleme Çalışması. Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 2019; 8(2):675-688.
  • Dogdu Okcu G., Okten HA., Yalcuk A. Heterogeneous photocatalytic degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D): its performance, kinetics, and economic analysis. Desalination and Water Treatment 2019; 137:312-327.
  • Dogdu Okcu G., Tunacan T., Dikmen E. Photocatalytic degradation of yellow 2G dye using titanium dioxide/ultraviolet A light through a Box–Behnken experimental design: Optimization and kinetic study. Journal of Environmental Science and Health A 2019; 54:136-145.
  • Domingues FS., Geraldino HCL., de Souza Freitas TKF., de Almeida CA., de Figueiredo FF., Garcia, JC. Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5 composite catalyst under UV/Vis irradiation. Environmental Technology 2021; 42(15): 2335–2349.
  • Elmolla ES., Chaudhuri M. The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment. Desalination 2011; 272:218-224.
  • Emamjomeh MM., Sivakumar M. Review of pollutants removed by electro- coagulation and electrocoagulation/flotation processes. Journal of Environmental Management 2009; 90:1663–1679.
  • Eryuruk K., Tezcan Un U., Bakır Ogutveren U. Electrochemical treatment of wastewaters from poultry slaughtering and processing by using iron electrodes. Journal of Cleaner Production 2018; 172:1089–1095.
  • FAO - Food and Agriculture Organization of the United Nations, Water for Sustainable Food and Agriculture A report produced for the G20 Presidency of Germany, 2017. Erişim adresi: http://www.fao.org/3/a-i7959e.pdf), (Erişim tarihi: 14 Kasım 2020).
  • Fernandes A., Makoś P., Wang Z., Boczkaj G. Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chemical Engineering Journal 2020; 391:123488.
  • Ferreira LC., Fernandes JR., Rodríguez-Chueca J., Peres JA., Lucas MS., Tavares PB. Photocatalytic degradation of an agro-industrial wastewater model compound using a UV LEDs system: kinetic study. Journal of Environmental Management 2020; 269:110740.
  • Garcia BB., Lourinho G., Romano P., Brito PSD. Photocatalytic degradation of swine wastewater on aqueous TiO2 suspensions: optimization and modeling via Box-Behnken design. Heliyon 2020; 6:03293.
  • Ghaly MY., Jamil TS., El-Seesy IE., Souaya ER., Nasr RA. Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal 2011; 168:446–454.
  • Hilares RT., Atoche-Garay, DF., Pagaza, DAP., Ahmed MA., Andrade, GJC., Santos JC. Promising physicochemical technologies for poultry slaughterhouse wastewater treatment: A critical review. Journal of Environmental Chemical Engineering 2021; 9: 105174.
  • Konstantinou IK., Albanis TA. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations a review. Applied Catalysis B: Environmental 2004; 49(1):1–14.
  • Naresh Yadav D., Anand Kishore K., Saroj D. A Study on removal of Methylene Blue dye by photo catalysis integrated with nanofiltration using statistical and experimental approaches. Environmental Technology 2021; 42(19): 2968-2981.
  • Njoya M., Basitere M.,Ntwampe SKO. Analysis of the characteristics of poultry slaughterhouse wastewater (PSW) and its treatability. Water Practice & Technology 2019; 14(4):959-970.
  • Özkal CB., Pagano SM. Antibiyotik ve antibiyotiklere dirençli bakterilerin fotokataliz prosesi ile gideriminin değerlendirilmesi. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 2016; 5(1):1-18.
  • Poulopoulos SG., Ulykbanova G., Philippopoulos CJ. Photochemical mineralization of amoxicillin medicinal product by means of UV, hydrogen peroxide, titanium dioxide and iron. Environmental Technology 2021; 42:2941-2949.
  • Prieto O., Fermoso J., Nuñez y., del Valle JL., Irusta R. Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy 2005; 79(4):376-383.
  • Raj CB., Quen CHL. Advanced oxidation processes for wastewater treatment: optimization of UV/H2O2 process through a statistical technique. Chemical Engineering Science 2005; 60(19):5305–5311.
  • Raju AC., Chandra BS., Shukla A., Reja VK., Anish K., Neelancherry, R. Photocatalytic Treatment of Poultry Wastewater by Hectorite- TiO2 aqueous suspensions. Conference: International Conference on Chemical and Environmental Research (ICCER), JMC College Trichy, Tamilnadu India, 2014.
  • Ross PJ. Taguchi Techniques for Quality Engineering. McGraw-Hill, New York, NY; 1988.
  • Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta DK., Sengupta P. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General 2015; 490:42–49.
  • Samsudin MFR., Jayabalan PJ., Ong WJ., Ng YH., Sufian S. Photocatalytic degradation of real industrial poultry wastewater via platinum decorated BiVO4/g-C3N4 photocatalyst under solar light irradiation. Journal of Photochemistry & Photobiology A: Chemistry 2019; 378:46–56.
  • Soltani DC., Jorfi R., Safari S., Rajaei M., Sadegh M. Enhanced sonocatalysis of textile wastewater using bentonite- supported ZnO nanoparticles: Response surface methodological approach. Journal of Environmental Management 2016; 179:47-57.
  • Talebian N., Nilforoushan MR., Mogaddas FJ. Comparative study on the sonophotocatalytic degra- dation of hazardous waste. Ceramics International 2013; 39:4913–4921.
  • Talinli I., Anderson GK. Interference of hydrogen peroxide on the standard cod test. Water Research 1992; 26:107–110.
  • Tarım ve Orman Bakanlığı, 2020. Tarım Ürünleri Piyasaları. Tavuk Eti. (Erişim tarihi: https://arastirma.tarimorman.gov.tr/tepge/Menu/27/Tarim-Urunleri-Piyasalari), (Erişim Tarihi: 20 Şubat 2020).
  • Thind P., Kumari D., John S. TiO2 /H2O2 mediated UV photocatalysis of Chlorpyrifos: Optimization of process parameters using response surface methodology. Journal of Environmental Chemical Engineering 2018; 6(3):3602-3609.
  • Thirugnanasambandham K., Sivakumar V., Maran JP. Efficiency of electrocoagulation method to treat chicken processing industry wastewater—modeling and optimization. Journal of the Taiwan Institute of Chemical Engineers 2014; 45:2427–2435. Tien, NTC., Huyen TTB., Hien LPT., Huy NN. A study on the optimization of photocatalytic removal of enrofloxacin using TiO2 material. IOP Conf. Series: Earth and Environmental Science 2021; 652:012010.
  • TUİK, 2019. Türkiye İstatistik Kurumu (TÜİK). www.tüik.gov.tr
  • UN General Assembly, 2015. Transforming our world: the 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1, (Erişim adresi: https://www.refworld.org/docid/57b6e3e44.html), (Erişim tarihi: 5 Ocak 2022).
  • USEPA (Environmental Protection Agency). Nutrient Control Design Manual: State of Technology Review Report. 2009. EPA/600/R-09/012. Water Supply and Water Resources Division, Cincinnati, 2009; Ohio. January.
  • Vela N., Calín M., Yáñez-Gascón MJ., el Aatik A., Garrido I., Pérez-Lucas G., Fenoll J., Navarro S. Removal of Pesticides with Endocrine Disruptor Activity in Wastewater Effluent by Solar Heterogeneous Photocatalysis Using ZnO/Na2S2O8. Water, Air, & Soil Pollution 2019; 230: 134.
  • Verma A., Chhikara I., Dixit D. Photocatalytic treatment of pharmaceutical industry wastewater over TiO2 using immersion well reactor: synergistic effect coupling with ultrasound. Desalination and Water Treatment 2014; 52: 6591–6597.
  • Weerasekara AW., Jenkins S., Abbott LK., Waite I., McGrath JW., Larma I., Eroglu E., O’Donnell A., Whiteley AS. Microbial Phylogenetic and Functional Responses within Acidified Wastewater Communities Exhibiting Enhanced Phosphate Uptake. Bioresource Technology 2016; 220:55–61.
  • WHO Coronavirus Disease (COVID-19) Dashboard, 2022, (Erişim adresi: https://covid19.who.int/), (Erişim tarihi: 7 Ocak 2022).
  • Yan Z., Huang W., Jiang X., Gao J., Hu Y., Zhang H., Shi Q. Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis, Microporous and Mesoporous Materials 2021; 323:111228.
  • Yazıcı Güvenç S., Varank G. Kozmetik Sanayi Atıksularının Elektro-Fenton Yöntemi ile Arıtımında Cevap Yüzey Metodu Kullanılarak Proses Optimizasyonu. Çukurova University Journal of the Faculty of Engineering and Architecture 2019; 34(1):57-66.
  • Zhang S., Pang X., Yue Z., Zhou Y., Duan H., Shen W., Li J., Liu Y., Cheng Q. Sulfonamides removed from simulated livestock and poultry breeding wastewater using an in-situ electro-Fenton process powered by photovoltaic energy. Chemical Engineering Journal 2020; 397:125466.