Li İyon Pil Katot Nitrik Asitte Çözünme Koşullarının Belirlenmesi

Bu çalışmada atık lityum-iyon pil katot malzemesinin nitrik asit çözeltisinde çözülerek metalik malzemeler ile grafitin geri kazanım koşulları belirlenmiştir. Yapılan çalışmada atık Li-iyon katot malzemesi farklı molaritelere sahip nitrik asit çözeltisinde liç edilmiş ve metallerin çözünme verimi araştırılmıştır. Çözünme verimini etkileyen katı-sıvı oranı, çözünme süresi, H2O2 katkısı parametrelerinin çözünme verimi üzerindeki etkisi incelenmiştir. Yapılan incelemeler sonucunda en uygun çözme koşullarının 2 saat liç süresi, 100 g/L katı-sıvı oranı ve 3M nitrik asit çözeltisi olduğu tespit edilmiştir. H2O2 katkısının incelendiği 2M nitrik asit çözeltisinde H2O2 katkısının olumlu etkisinin olmasına karşılık yeterli çözünme verimine ulaşılamadığı görülmüştür.

Evaluation of Dissolution Conditions of Li-Ion Battery Cathode Material in Nitric Acid

In this study, recycling conditions of metallic materials and graphite from waste Li-ion cathodes are evaluated by using nitric acid solution. Li-ion cathode material is leached in nitric acid solution and leaching efficiency is studied in the present study. Parameters that affect the leaching efficiency, solid-liquid ratio, leaching time, H2O2 addition are investigated by relationship with leaching efficiency. Investigations show that optimal leaching conditions are 2 hours leaching time, 100 g/L solid-liquid ratio and 3M nitric acid solution. In 2M nitric acid solution addition of H2O2 is found to increase the efficiency however a satisfying leaching efficiency could not be reached.

___

  • Alexandre Chagnes, B. P. (2013). A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology and Biotechnology, 1191-1199.
  • Arthur von Wald Cresce, K. X. (2021). Aqueous lithium‐ion batteries. Carbon Energy, 721-751.
  • Bin Wang, X.-Y. L.-Y. (2019). Recycling LiCoO2 with methanesulfonic acid for regeneration of lithium-ion battery electrode materials. Journal of Power Sources.
  • Chu Liang, M. G. (2013). Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 246-256.
  • Chunwei Liu, J. L. (2019). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review. Journal of Cleaner Production, 801-813.
  • Churl Kyoung Lee, K.-I. R. (2003). Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy, 5-10.
  • Eric Gratz, Q. S. (2014). A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 255-262.
  • Heesuk Ku, Y. J.-M. (2016). Recycling of spent lithium-ion battery cathode materials byammoniacal leaching. Journal of Hazardous Materials, 138-146.
  • Honggang Wang, B. F. (2015). Development of a Highly Efficient Hydrometallurgical Recycling Process for Automotive Li–Ion Batteries. Journal of Sustainable Metallurgy, 168-178.
  • Liang Sun, K. Q. (2012). Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries. Waste Management, 1575-1582.
  • StefanWindisch-Kern, A. H. (2021). Pyrometallurgical Lithium-Ion-Battery Recycling: Approach to Limiting Lithium Slagging with the InduRed Reactor Concept. Processes.
  • Yang Guo, F. L. (2016). Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl). Waste Management, 227-233.
  • Zain A. Kader, A. M. (2021). A review on sustainable recycling technologies for lithium-ion batteries. Emergent Materials, 725-735.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi