Desfluranın Aynı Konsantrasyonda Fakat Farklı Akımlarda Kullanılması Oksidatif Stresi Değiştiştirir mi? Hayvan Deneyi

İnhalasyon anesteziklerinin oksidatif stres ve serbest radikallerin oluşumunda etkili olduğu bilinmektedir. Bu çalışmanın amacı, desfluranın bu etkilerini araştırmak ve farklı akımlarda oluşan  değişiklikleri saptamaktır. Fareler üç gruba ayrıldı (10 fare / grup). Birinci grup kontrol grubu idi. İkinci grupta, ketamin ile sedasyon sağlanan farelere bir cam kutuda  % 100 oksijen içerisinde % 6 konsantrasyonda,  20 dakika boyunca, 8 lt / dk akış hızında desfluran verildi. Üçüncü grupta bir cam kutu içerisinde  ketamin ile sedasyon sağlanmış farelere, % 100 oksijen içerisinde % 6 konsantrasyonda, 20 dakika boyunca, 2 lt / dk akış hızında desfluran verildi. Biyokimyasal parametreler ölçüldü. Serum, beyin, karaciğer dokusu MDA ve SOD düzeyleri yüksek akım grubunda kontrol ve düşük akım grubundan anlamlı olarak daha yüksek bulundu. Her iki gruba göre serum GPx düzeyleri yüksek akım grubunda anlamlı olarak düşüktü. Serum, karaciğer ve beyin dokusunda ADMA düzeyleri yüksek akım grubunda anlamlı olarak yüksek bulundu. Her üç grup arasında serum 8-OHdG seviyelerinde anlamlı fark yoktu. Beyin ve karaciğer dokusu 8-OHDG düzeyleri her iki grupta kontrol grubuna göre daha yüksekti.  Desfluran anestezi modelinde, desfluranın aynı konsantrasyonlarda  düşük akımda kullanıldığında oksidatif stresi azalttığı, yüksek akımda kullanıldığında ise oksidatif stresi arttırdığı görülmüştür.

Does the Application of Desflurane at The Same Concentration by Different Flows Change the Oxidative Stress? Animal Experiment

It is known that inhalation anesthetics are effective in the formation of oxidative stress and free radicals. The purpose of this study is to investigate these effects of desflurane and to detect changes in different flows. The rats were divided into three groups (10 mice/group). The first group was the control group. In the second group, mice were sedated with ketamine and given desflurane at a concentration of 6% in a 100% oxygen flow at a flow rate of 8 lt / min in a glass box for 20 minutes. The third group was comprised of ketamine-sedated mice that were given desflurane at a concentration of 6% in a 100% oxygen flow at a flow rate of 2 lt/min in a glass box for 20 minutes. Biochemical parameters were measured using commercial kits. Serum, brain, liver tissue MDA and SOD levels were significantly higher in the high flow group than in the control and low flow group. Serum GPx levels were significantly lower in the high flow group compared to both groups. ADMA levels in the serum, liver, and brain tissue were significantly higher in the high flow group. There was no significant difference in serum 8-OHdG levels between all three groups. Brain and liver tissue 8-OHDG levels were higher in both groups than control group. It has been observed that the use of low flow fresh gas even in the same concentrations of desflurane anesthesia models decreases oxidative stress whereas the use of high flow increases oxidative stress. 

___

  • Referans1. Noeman SA, Hamooda HE, Baalash AA. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. DiabetolMetabSyndr. 2011 Aug 3;3(1):17.
  • Referans2. Zhang W, Liu M, Zang Z, et al. Effect of different anesthesia methods on erythrocyte immune function in mice.Asian Pacific Journal of Tropical Medicine (2013)995-998.
  • ReferansReferans3. TürkanH,Aydın A, Sayal A, et al. The effect of sevoflurane and desflurane on markers of oxidative status in erythrocyte. Toxicology and Industrial Health 27(2) 181-186.
  • Referans4. Schilling T, Kozlan A, Kretzschmar M, et al. Effects of propofol and desfluraneanaesthesia on the the alveolar inflammatoryy response to one-lung ventilation. Br J Anaesth. 2007;99:368-75.
  • Referans5. Wilson JX, Gelb AW. Free Radicals, Antioxidants, and Neurologic Injury: Possible Relationship to Cerebral Protection by Anesthetics. Journal of Neurosurgical Anesthesiology. 2002;14–1:66-79.
  • Referans6.Kevin LG, Novalija E, David F. Reactive Oxygen Species as Mediators of Cardiac Injury and Protection: The Relevance to Anesthesia Practice. Anesthesia & Analgesia. 2005;101-5:1275-1287.
  • Referans7.Zülfikaroğlu B, Koç M, Soran A, Isman FK, Cinel İ. Evaluation of oxidative stress in laparoscopic cholecystectomy. Surg Today 2002;32:869–874.
  • Referans8. Garg N, Singh R, Dixit J, Jain A, Tewari V. Levels of lipid peroxides and antioxidants in smokers and nonsmokers. J Periodontal Res 2006;41:405-10.
  • Referans9. Sivaci R, Kahraman A, Serteser M, Sahin DA, Dilek ON. Cytotoxic effects of volatile anesthetics with free radicals undergoing laparoscopic surgery.ClinBiochem 2006;39:293–298.
  • Referans10. Allaouchiche B, Debon R, Goudable J, Chassard D, Duflo F. Oxidative stress status during exposure to propofol, sevoflurane and desflurane. AnesthAnalg. 2001; 93: 981-5.
  • Referans11.Koksal GM, Sayilgan C, Aydin S, Uzun H, Oz H . The effects of sevoflurane and desflurane on lipid peroxidation during laparoscopic cholecystectomy. March 2004;21(3);217-220.
  • Referans12. Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J ClinNutr 1993;57(5):715-24.
  • Referans13. Yu BP. Cellular defenses against damage from reactive oxygen species. Physiol Rev 1994;74(1):139-62.
  • Referans14. AsimetrikDimetilArjinin (ADMA) MetabolizmasıInt J Basic Clin Med 2013;1(1):61-66.
  • Referans15. Matsuguma K, Ueda S, Yamagishi S, Matsumoto Y, Kaneyuki U, Shibata R, Fujimura T, Matsuoka H, Kimoto M, Kato S, Imaizumi T, Okuda S. Molecular mechanism for elevation of asymmetric dimethylarginine and its role for hypertension in chronic kidney disease. J Am SocNephrol 2006;17(8): 2176-83.
  • Referans16. Ames B.N., Shigenara M.K, “DNA damage by Endogenous oxsidants and mithogenesis As Causes of Aging and Cancer” Molecular Biology of free radical scavenging systems, ed, scandalios, J.G. (Cold Spring Harbor LaboratuaryPres, Plainviev .p:1-21) (1992)
  • Referans17.Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–63.
  • Referans18. Fessel JP, Flynn CR, Robinson LJ, Penner NL, Gladson S, Kang CJ, Wasserman DH, Hemnes AR, West JD. Hyperoxia synergizes with mutant bone morphogenic protein receptor 2 to cause metabolic stress, oxidant injury, and pulmonary hypertension. Am J Respir Cell Mol Biol. 2013;49:778–87.
  • Referans19. Stoner JD, Clanton TL, Aune SE, Angelos MG. O2 delivery and redox state are determinants of compartment-specific reactive O2 species in myocardial reperfusion. Am J Physiol Heart Circ Physiol. 2007;292:H109–16.
Online Türk Sağlık Bilimleri Dergisi-Cover
  • ISSN: 2459-1467
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Oğuz KARABAY