PROTON ELEKTROLİT MEMBRANLI (PEM) ELEKTROLİZÖRÜN SAYISAL İNCELENMESİ VE DENEYSEL DOĞRULANMASI

   Bu çalışmada Proton Elektrolit Membranlı (PEM) elektrolizör hücresinde meydana gelen fiziksel ve elektrokimyasal olaylar ve hücre voltajı, akım yoğunluğu gibi çalışma parametrelerinin hücre performansına etkileri sayısal ve deneysel olarak incelenmiştir. Elektroliz hücresinde akış, kütle transferi, şarj korunumu ve elektrokimyasal olayları karakterize eden denklemler COMSOL Multiphysics ticari yazılımı ile çözülmüştür. Deney düzeneğinde 50 cm2 aktif alana sahip membran elektrot grubu (MEG) kullanılırken, anotta gözenekli titanyum, katotta gaz difüzyon tabakası olarak karbon kâğıt kullanılmıştır. Ölçülen deneysel sonuçlar hesaplanan sayısal sonuçlarla karşılaştırılmış, özellikle yüksek akım yoğunluklarında sayısal modelin hücre davranışını tahmininde öngörülen hata ile doğru sonuç verdiği görülmüştür. Bu durumun modelde yapılan eş sıcaklık kabulünden kaynaklandığı değerlendirilmiştir. Sayısal sonuçlar kanal boyunca oksijen ve hidrojen konsantrasyonlarının arttığını göstermiştir. Hidrojen üretimi 1,48 V’da başlarken akım yoğunluğu arttıkça hidrojen üretiminin de arttığı tespit edilmiştir. Ayrıca voltaj verimi sayısal çözümde 0,809 iken deneyselde 0,871 olarak tespit edilmiştir.

NUMERICAL INVESTIGATION AND EXPERIMENTAL VERIFICATION OF PROTON ELECTROLYTE MEMBRANED (PEM) ELECTROLYSER

   In this study, the physical and the electrochemical phenomena occurred within the proton exchange membrane (PEM) electrolysis cell and the effects of some operating parameters such as cell voltage, current density on the cell performance were investigated numerically and experimentally. The equations which characterize flow, mass transfer, conservation of charge and electrochemical reactions were solved by using COMSOL Multiphysics commercial software. In the experimental setup, the Membrane Electrode Group (MEG) which has 50 cm2 active area, porous titanium at anode and carbon paper as gas diffusion layer at cathode are used. The numerical results compared with measured experimental data. It is sound that while the model satisfactorily agrees with experimental data at low current densities, it deviates at high current densities mainly because of isothermal assumption employed. The numerical results have shown that the oxygen and hydrogen concentrations increase along the channel. Also the hydrogen production starts at 1.48 V and it increase as the current density increase. However, the voltage efficiencies of PEM electrolyser for numerical and experimental study were found as 0.809 and 0.871, respectively.

___

  • [1] KONOPKA, A., GREGORY D., “Hydrogen Production by Electrolysis: Present and Future”, 10th Intersociety Energy Conversion Engineering Conference, 1184-1193. New York, USA, 1975.
  • [2] TSUTOMU, O., YOSHINORI, S., “Optimum Hydrogen Generation Capacity and Current Density of the PEM-type Water Electrolyser Operated Only During the off-peak Period of Electricity Demand”, Journal of Power Sources, 129, 229–237, 2004.
  • [3] SLADE, S., CAMPBELL, S., RALPH, T., WALSH, F., “Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes”, Journal of Electrochemical Society, 149, A1556-A1564, 2002.
  • [4] SELAMET, O.F., PASAOGULLARI, U., SPERNJAK, D., HUSSEY, D.S.D., JACOBSON, L., MAT, M.D., “Two-phase Flow in a Proton Exchange Membrane Electrolyzer Visualized in Situ by Simultaneous Neutron Radiography and Optical Imaging”, International Journal of Hydrogen Energy, 38, 5823-5835, 2013.
  • [5] SELAMET, O.F., ACAR, C.M., MAT, M.D., KAPLAN, Y., “Effects of Operating Parameters on the Performance of a High-Pressure Proton Exchange Membrane Electrolyzer”, International Journal of Energy Research, 37, 457-467, 2013.
  • [6] SELAMET, O.F., BECERİKLİ, F., MAT, M.D., KAPLAN, Y., “Development and Testing of a Highly Efficient Proton Exchange Membrane (PEM) Electrolyzer Stack”, International Journal of Hydrogen Energy, 36, 11480-11487, 2011.
  • [7] LAOUN, B., BELHAMEL, M., NACEUR, W., SERIR, L., “Electrochemical Aided Model to Study Solid Polymer Electrolyte Electrolysis”, Revue des Energies Renouvelables, 11, 267-276, 2008.
  • [8] NI, M., LEUNG, M.K.H., LEUNG, D.Y.C., “Electrochemistry Modeling of Proton Exchange Membrane (PEM) Water Electrolysis for Hydrogen Production”, World Hydrogen Energy Conference, Paris, France, 13-16 June, 2006.
  • [9] NIE, J., CHEN, Y., BOEHM, R.F., KATUKOTA, S., “A Photochemical Model of Proton Exchange Water Electrolysis for Hydrogen Production”, Journal of Heat Transfer, 130, 042409-1-042409-6, 2008.
  • [10] GRIGORIEV, S.A., KALINNIKOV, A.A., MILLET, P., POREMBSKY, V.I., FATEEV, V.N., “Mathematical Modeling of High Pressure PEM Water Electrolysis”, Journal of Applied Electrochemistry, 40, 921-932, 2010.
  • [11] GORGUN, H., “Dynamic Modelling of a Proton Excahnge Membrane (PEM) Electrolyzer”, International Journal of Hydrogen Energy, 31, 29-38, 2006.
  • [12] BUSQUET, S., HUBERT, C., E., LABBE, J., MAYER, D., METKEMEIJER, R., “A New Approach to Empirical Electrical Modelling of a Fuel Cell, an Electrolyser or a Regenerative Fuel Cell”, Journal of Power Sources, 134, 41-48, 2004.
  • [13] CHOI, P., BESSARABOV, D., G., DATTA, R., “A Simple Model for Solid Polymer Electrolyte (SPE) Water Electrolysis”, Solid State Ionics, 175, 535-539, 2004.
  • [14] BERNARDI, D.M., VERBRUGGE, M.W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, Jounal of Electrochemical Society, 139, 2477-2491, 1992.
  • [15] SCOTT, K., TAAMA, W., CRUICKSHANK, J., “Performance and Modelling of a Direct Methanol Solid Polymer Electrolyte Fuel Cell”, Journal of Power Sources, 65, 159-171, 1997.
  • [16] BERNING, T., DJILALI, N., “Three-Dimensional Computational Analysis of Transport in a PEM Fuel Cell”, Journal of Power Sources, 124, 440-452, 2003.
  • [17] BARD, J.A., FAULKNER, R.L., “Electrochemical Methods: Fundamentals and Applications”, Wiley, New York, 1980.
  • [18] SCHROEDER, D.V., “An Introduction to Thermal Physics”, Addison Wesley, 2000.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi