YENİ TASARI ÜÇLÜ CAMLI FAZ DEĞİŞİM MADDELİ DUVARIN ENERJİ VE ÇEVRE DEĞERLENDİRMESİ

   Bu çalışma güneşle boşluk ısıtmak için faz değişim maddeli duvarın ısıl performansını araştırmak amacıyla yapılmıştır. Faz değişim maddeli duvarlar, tuğla duvar, faz değişim maddesi içeren sıva levhası ve yeni tasarı üçlü cam bileşenlerinden oluşmaktadır. Deney odasının güneş enerjisi ile ısıtılması için deney odasının güney cephesi FDM duvar kullanılarak inşa edilmiştir. FDM duvarın toplam verimi aylık bazda deneysel olarak saptanmıştır. Deneysel analize ek olarak FDM duvarın performansı hakkında daha genel bir sonuç elde etmek için on yıllık ortalama meteorolojik verilere dayanan teorik enerji analizi gerçekleştirilmiştir. Ayrıca, PCM duvardan kaynaklı test odasındaki CO2 azalması da hesaplandı. Teorik analiz sonuçları gösterdi. Teorik analiz sonuçları CO2 emisyonundaki azalmanın ısıtma periyodu süresince aylık bazda %57’den %7’ye kadar değiştiği göstermektedir. Isıtma periyodu Ekim ayından Mayıs ayına kadardır. CO2 emisyonundaki azalma yıllık bazda %16’dır.

ENERGY AND ENVIRONMENTAL EVALUATION OF A PCM WALL COVERED WITH NOVEL TRIPLE GLASS

   Research was conducted to investigate the performance of phase change material (PCM) walls for solar space heating. The PCM walls were consisted of brick walls, plasterboards containing PCMs and novel triple glazing units. South façade of a test room was constructed using the PCM walls for heating the test room with solar thermal energy. The overall efficiency of the PCM walls was experimentally determined on a monthly basis. In addition to experimental analysis, a theoretical energy analysis of the PCM walls based on 10-year mean meteorological data was performed to provide a more general conclusion about the performances of the PCM walls. Besides, reduction in CO2 from the test room owing to PCM wall was also calculated. Theoretical analysis results showed that, the reduction of CO2 emission on a monthly basis varied from 57 to 7% during the heating period.  Heating period is from October through May. Reduction of CO2 emission was 16% on an annual basis. 

___

  • [1] DINCER, I., ROSEN, M.A., “Energy Environment and Sustainable Development”, Applied Energy, 64, 427–440, 1999.
  • [2] DINCER, I., “Environmental Impacts of Energy”, Energy Policy, 27, 845–854, 1999.
  • [3] ILERI, A., MOSHIRI, S., “Effects of Common Fuel and Heating System Options on the Energy Usage, Pollutant Emissions and Economy”, Energy and Buildings, 24:11–8, 1996.
  • [4] ROLFSMAN, B., “CO2 Emission Consequences of Energy Measures in Buildings”, Building and Environment, 37, 1421–1430, 2002.
  • [5] LÓPEZ-OCHOA, L., LAS-HERAS-CASAS, J., LÓPEZ-GONZÁLEZ, L., “Environmental and Energy Impact of the EPBD in Residential Buildings in Cold Mediterranean Zones: The Case of Spain”, Energy and Buildings, 150 567–582, 2017.
  • [6] CABEZA, L.F., RINCÓN, L., VILARIÑO, V., PÉREZ, G., CASTELL, A., “Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: A review”, Renewable and Sustainable Energy Reviews, 29, 394–416, 2014.
  • [7]http://www.celsius.co.kr/phase_change_materials/download/energy/Advanced_Thermal_Energy_Storage_through_application_of_PCMs.pdf (accession date 26.06.2016)
  • [8] KHUDHAIR, A.M., FARID, M.M., “A Review on Energy Conversation in Building Applications with Thermal Storage by Latent Heat Using Phase Change Materials”, Energy Conversion and Management, 45, 263-275, 2004.
  • [9] ZHANG, Y., ZHOU, G., LIN, K., ZHANG, Q., DI, H., “Application of Latent Heat Thermal Energy Storage in Buildings: State-of-the-Art and Outlook” Building and Environment, 42, 2197–2209, 2007.
  • [10] TYAGI, V.V., BUDDHI, D., “PCM Thermal Storage in Buildings: A State of Art”, Renew and Sustain Energy Rev., 11(6); 1146-1166, 2007.
  • [11] PASUPATHY, A., VELRAJ, R., SEENIRAJ, R.V., “Phase Change Material-Based Building Architecture for Thermal Management in Residential and Commercial Establishments”, Renewable and Sustainable Energy Reviews, 12, 39–64, 2008.
  • [12] SHARMA, V.V., TYAGI, C.R., CHEN, D.B., “Review on Thermal Energy Storage with Phase Change Materials and Applications”, Renewable and Sustainable Energy Reviews, 13, 318–345, 2009.
  • [13] BAETENS, R., JELLE, B.P., GUSTAVSEN, A., “Phase Change Materials for Building Applications: A State-of-the-Art Review”, Energy and Buildings, 42, 1361–1368, 2010.
  • [14] http://www.rubitherm.eu/ (accession date 26.06.2016).
  • [15] http://www.lamberts.info/en/home/ (accession date 26. 06.2016).
  • [16] KARA, Y.A., KURNUÇ, A., “Performance of Coupled Novel Triple Glass Unit and PCM Wall”, Applied Thermal Engineering, 35, 243-246, 2012.
  • [17] KARA, Y.A., KURNUÇ, A., “Performance of Coupled Novel Triple Glass and Phase Change Material Wall in the Heating Season: an Experimental study”, Solar Energy, 86(9), 2432-2442, 2012.
  • [18] HOLMAN, J.P., Experimental Methods for Engineers, (6th ed.), McGraw-Hill, Singapore, 1994.
  • [19] DUFFIE, J.A., BECKMAN, W.A., Solar Engineering of Thermal Processes (2nd ed.), JohnWiley &Sons Inc., 1991.
  • [20] FERGUSON, C.R., KIRKPATRICK, A.T., Internal Combustion Engines (2nd ed.), John Wiley &Sons Inc., 2001.
  • [21] ABDALLAH, A.M., ISMAIL, A.L., “Saving Energy Lost from Steam Boiler Vessels”, Renewable Energy, 23, 537–550, 2001.
  • [22] ÇOMAKLI, K., YÜKSEL, B., “Environmental Impact of Thermal Insulation Thickness in Buildings”, Applied Thermal Engineering, 24, 933–940, 2004.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi