KARAYOLU ÖLÇMELERİNDE İNSANSIZ HAVA ARAÇLARININ KULLANILMASI: OKURCALAR ŞEHİR MERKEZİ ÖRNEĞİ

   Trafik akışının yoğun ve ölçülecek detayların fazla olduğu karayolu şehir merkezi geçişlerinde yersel yöntemlerle sayısal arazi modeli üretimi, zaman ve maliyet açısından olumsuzluk getirmektedir. Farklı becerilere sahip ölçüm araçlarını taşıyabilen ve maliyetleri düşüş eğiliminde olan insansız hava araçları (İHA), ortofoto ve sayısal arazi modeli üretimi için etkili sistemlerdir. Bu çalışmada, GNSS-IMU destekli bir İHA ve Structure From Motion (SFM) algoritması kullanılarak 700 metrelik karayolu koridorunun 4,9 cm mekânsal çözünürlüklü ortofoto görüntüsü ve nokta bulutu elde edilmiştir. Elde edilen nokta bulutuna Cloth Simulation Filtering (CSF) ve Gaussian filtreleme yöntemleri uygulandıktan sonra test karayolu koridorunun sayısal arazi modeli elde edilmiştir. İHA sisteminin doğruluğu yersel yöntem ile test edilmiş, İHA yönteminin sert satıhlı zeminlerde 3,96 cm, toprak zeminlerde 7,32 cm düşey doğrulukla 3B veri üretebileceği belirlenmiştir. Elde edilen sonuçlar, İHA sistemlerinin fotogrametrik ölçümlere engel bir detay içermeyen düz arazi yapılı karayolu koridorlarında ortofoto görüntü ve sayısal arazi modeli üretiminde oldukça etkili olduğunu göstermektedir.

USE OF UNMANNED AERIAL VEHICLES IN ROADWAY MEASUREMENTS: OKURCALAR CITY CENTER EXAMPLE

   In the roadway city center transitions where the traffic flow is dense and the detail to be measured is high, production of digital terrain model by terrestrial methods brings negation in terms of time and cost. Unmanned aerial vehicles (UAVs), which can carry measuring instruments with different skills and tend to decrease in cost, are effective systems for production of orthophoto and digital terrain model. In this study, point cloud and 4.9 cm spatial resolution orthophoto image of 700-meter roadway corridor was produced by using Structure From Motion (SFM) algorithm and an UAV supported by GNSS-IMU. After applying the Cloth Simulation Filtering (CSF) and Gaussian filtering methods to the obtained point cloud, the digital terrain model of the test roadway corridor was obtained. The accuracy of the UAV system was tested by the terrestrial method, it has been determined that UAV method can obtain 3D data with a vertical accuracy of 3.96 cm on hard surface grounds and 7.32 cm on soil grounds. The results show that the UAV systems is very effective in the production of orthophoto images and digital terrain models in roadway corridors which have flatness terrain and have no objects that prevent photogrammetric surveys.

___

  • [1] KARKINLI, A.E., KESİKOĞLU, A., KESİKOĞLU, M.H., ATASEVER, U.H., ÖZKAN, C., BEŞDOK, E., “İnsansız Hava Araçları ile Sayısal Arazi Modeli Üretimi”, Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB)VIII. Sempozyumu, 21-23 Mayıs, Konya, Türkiye, 2015.
  • [2] EISENBEISS, H., SAUERBIER, M., “Investigation of UAV Systems and Flight Modes for Photogrammetric Applications”, The Photogrammetric Record, 26(136), 400-421, 2011.
  • [3] VEGA, F.A., RAMIREZ, F.C., SAIZ, P.S., ROSUA, F.O., “Multi-temporal Imaging Using an Unmanned Aerial Vehicle for Monitoring a Sunflower Crop”, Biosystems Engineering, 132, 19-27, 2015.
  • [4] YU, N., LI, L., SCHMITZ, N., TIAN, L.F., GREENBERG, J.A., DIERS, B.W., “Development of Methods to Improve Soybean Yield Estimation and Predict Plant Maturity with an Unmanned Aerial Vehicle Based Platform”, Remote Sensing of Environment, 187, 91-101, 2016.
  • [5] MESSINGER, M., SILMAN, M., “Unmanned Aerial Vehicles for the Assessment and Monitoring of Environmental Contamination: An Example from Coal Ash Spills”, Environmental Pollution, 218, 889-894, 2016.
  • [6] CHIABRANDO, F., NEX, F., PIATTI, D., RINAUDO, F., “UAV and RPV Systems for Photogrammetric Surveys in Archaelogical Areas: Two Tests in the Piedmont Region (Italy)”, Journal of Archaeological Science, 38, 697-710, 2011.
  • [7] HENDRICKX, M., GHEYLE, W., BONNE, J., BOURGEOIS, J., DE WULF, A., GOOSSENS, R., “The Use of Stereoscopic Images Taken from a Microdrone for the Documentation of Heritage - An Example from the Tuekta Burial Mounds in The Russian Altay”, Journal of Archaeological Science, 38, 2968-2978, 2011.
  • [8] THEMISTOCLEOUS, K., LYSANDROU, V., CUCA, B., AGAPIOU, A., HADJIMITSIS, D.G., “Exploring the Ancient Kourion City Site from the Air Using Unmanned Aerial Vehicles”, International Journal of Heritage in the Digital Era, 4, 307-323, 2015.
  • [9] RATHINAM, S., KIM, Z.W., SENGUPTA, R., “Vision-based Monitoring of Locally Linear Structures Using an Unmanned Aerial Vehicle”, First Journal Of Infrastructure Systems, 14 (1), 52-63, 2008.
  • [10] ZHANG, C., ELAKSHER, A., “An Unmanned Aerial Vehicle Based Imaging System for 3D Measurement of Unpaved Road Surface Distresses”, Computer-Aided Civil Infrastructure Engineering, 27 (2), 118-129, 2011.
  • [11] SIEBERT, S., TEIZER, J., “Mobile 3D Mapping for Surveying Earthwork Projects Using an Unmanned Aerial Vehicle (UAV) System”, Automation in Construction, 41, 1-14, 2014.
  • [12] EISENBEİSS, H., UAV Photogrammetry, Dissertation Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland. 2009.
  • [13] REMONDINO, F., BARAZZETTI, L., NEX, F., SCAIONI, M., SARAZZI, D., “UAV Photogrammetry for Mapping and 3D Modeling-Current Status and Future Perspectives”, Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, 2011.
  • [14] HUDZIETZ, B.P., SARIPALLI, S., “An Experimental Evaluation of 3D Terrain Mapping with an Autonomous Helicopter”, Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, 2011.
  • [15] BULATOV, D., SOLBRIG, P., GROSS, H., WERNERUS, P., REPASI, E., HEIPKE, C., “Context-Based Urban Terrain Reconstruction from UAV-Videos for Geoinformation Applications”, Proceedings of the International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich, Switzerland, 2011.
  • [16] SEYLAN, C., SEMİZ, F., BİCAN, O.S., “ İnsansız Araçlarla Düzlemsel Olmayan Alanların Taranması”, Savunma Bilimleri Dergisi, 11 (1), 107-117, 2012.
  • [17] AKGÜL, M., YURTSEVEN, H., DEMİR, M., AKAY, A.E., GÜLCİ, S., ÖZTÜRK, T., “ İnsansız Hava Araçları ile Yüksek Hassasiyette Sayısal Yükseklik Modeli Üretimi ve Ormancılıkta Kullanım Olanakları”, İstanbul Üniversitesi Orman Fakültesi Dergisi, 66 (1), 104-118, 2016.
  • [18] ÖZCAN, O., “İnsansız Hava Aracı ile Farklı Yüksekliklerden Üretilen Sayısal Yüzey Modellerinin (SYM) Doğruluk Analizi”, Mühendislik ve Yer Bilimleri Dergisi, 2 (1), 1-7, 2017.
  • [19] http://www.mavinci.de/pro-version/ (erişim tarihi: 20.03.2017)
  • [20] BEŞDOK, E., KASAP, B., “3D Nesne Modellemeye Yönelik Lazerli Bir Tarayıcı Sistemin Tasarımı ve Gerçekleştirilmesi”, Eleco, Elektrik - Elektronik - Bilgisayar Mühendisliği Sempozyumu ve Fuarı Bildirileri, Bursa, Türkiye, 2006.
  • [21] LOWE, D.G., “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, 60 (2), 91-110, 2004.
  • [22] SNAVELY, N., SEITZ, S.M., SZELISKI, R., “Modeling the World from Internet Photo Collections”, International Journal of Computer Vision, 80 (2), 189-210, 2008.
  • [23] FURUKAWA, Y., CURLESS, B., SEITZ, S.M., SZELISKI, R., “Towards Internet-Scale Multi-View Stereo”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1434-1441, San Fransisco, USA, 2010.
  • [24] FURUKAWA, Y., PONCE, J., “Accurate, Dense and Robust Multiview Stereopsis”, IEEE Transactions Pattern Analysis and Machine Intelligence, 32 (8), 1362-1376, 2010.
  • [25] BESL, P.J., MCKAY, N.D., “A Method for Registration of 3D Shapes”, IEEE Transactions On Pattern Analysis And Machine Intelligence, 14 (2), 239-256, 1992.
  • [26] JEBERA, T., AZARBAYEJANI, A., PENTLAND, A., “3D Structure From 2D Motion”, IEEE Signal Processing Magazine, 3D And Stereoscopic Visual Communication, 16 (3), 66-84, 1999.
  • [27] MOHR, R., TRIGSS, B., “ Projective Geometry for Image Analysis”, Technical report, International Society for Photogrammetry and Remote Sensing, Vienna Congress, WG III/2 Tutorial, 1996.
  • [28] HORN, B.K.P., “ Relative Orientation”, International Journal of Computer Vision, 4 (1), 59-78, 1990.
  • [29] http://www.agisoft.com/pdf/photoscan pro_1_3_en.pdf (erişim tarihi: 12.03.2017)
  • [30] ZHANG, W., QI, J., WAN, P., WANG, H., XIE, D., WANG, X., YAN, G., “An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation” Remote Sensing, 8 (6), 501, 2016.
  • [31] MONTAUT, G.D., Cloud Compare-Open Source Project; OpenSource Project: Grenoble, France, 2011.
  • [32] ADAMS, A., GELFAND, N., DOLSON, J., LEVOY, M., “Gaussian Kd-trees for Fast High-dimensional Filtering" ACM Transactions on Graphics (ToG), Proceedings of ACM SIGGRAPH, p.21, New York, USA, 2009.
  • [33] WIRJADI, O., BRUEL, T., “Approximate Separable 3D Anisotropic Gauss Filter", Image Processing (ICIP) IEEE International Conference on, pp. II-149, 2005.
  • [34] GÜNEN, M.A., “Nokta Bulutu Filtreleme Algoritmalarının Karşılaştırılması” Erciyes Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 78s, Kayseri, 2017.
  • [35] http://www.danielgm.net/cc/ (erişim tarihi: 08.08.2017)