ELEKTRİK ÖZDİRENÇ YÖNTEMİYLE PİROKLASTİK KAYAÇLARIN İNDEKS-DAYANIM ÖZELLİKLERİNİN BELİRLENMESİ

Bu çalışmanın amacı, çalışmaya hız kazandıran ve çalışma maliyetini azaltan elektrik özdirenç yöntemiyle piroklastik kayaçların indeks ve dayanım değerlerini belirlemektir. Bu amaçla 12 farklı piroklastik kayaç örneğinin indeks-dayanım ve elektrik özdirenç değerleri laboratuarda ölçülmüştür. Kayaçların elektrik özdirenç değerleri ile uyumlu indeks-mekanik özellikleri arasında basit regresyon analizi yapılmıştır. Kayaçların elektrik özdirenç değerleri ile indeks-dayanım özellikleri arasında güçlü belirleme katsayıları bulunmuştur. Elde edilen bu ilişkilere göre, elektrik özdirenç yönteminin, düzgün şekilli numune alımının güç veya olanaksız olduğu kayalarda ve/veya tarihi yapılarda kayaçların mühendislik özelliklerinin tahmininde tahribatsız bir yöntem olarak kullanılabilirliği ortaya konulmuştur.

DETERMINATION OF INDEX-STRENGTH PROPERTIES OF PYROCLASTIC ROCKS BY ELECTRICAL RESISTIVITY METHOD

The aim of this study is to determine index and mechanical properties of pyroclastic rocks by means of the relatively fast and cost-effective electrical resistivity method. For this purpose, index-mechanical and electrical resistivity values of 12 different pyroclastic rocks were determined in the laboratory. Simple regression analyses were made between index-mechanical properties of the rock samples compatible with electrical resistivity values. Strong relationships were found between index-mechanical properties and electrical resistivity values. Based on these relationships, the electrical resistivity method can be used to assess index and mechanical properties of rocks as a non-destructive method where collecting regular shaped rock samples are difficult and impossible.

___

  • [1] BOYCE, R., E., “Electrical resistivity of modern marine sediments from the Bering Sea”, Journal of Geophysical Research, 73, 4759-4766, 1968.
  • [2] KERMABON, A., GEHİN, C., BLAVİER, P., “A deep-sea electrical resistivity probe for measuring porosity and density of unconsolidated sediments”, Geophysics, 34, 554-571, 1969.
  • [3] KELLER, G.,V., “Engineering applications of electrical geophysical methods, Subsurface Exploration for Underground Excavation and Heavy Construction”, ASCE, 128-143, 1974.
  • [4] MATSUİ, T., PARK, S.G., PARK, M.K,, MATSUURA, S., “Relationship Between Electrical Resistivity and Physical Properties of Rocks”, In Proceedings of an International Conference on Geotechnical & Geological Engineering, 19-24. Melbourne, Australia, 2000.
  • [5] KHAİRY, H., HARİTH, Z.Z.T., “Influence of pore geometry, pressure and partial water saturation to electrical properties of reservoir rock: Measurement and model development”, Journal of Petroleum Science and Engineering, 78, 687-704, 2011.
  • [6] RAHMAN, T., LEBEDEV, M., ZHANG, Y., BARİFCANİ, A., IGLAUER, S., “Influence of Rock Microstructure on its Electrical Properties: An Analysis Using X-ray Microcomputed Tomography”, Energy Procedia 114, 5023-5031, 2017.
  • [7] LİERA, F., SATO, M., NAKATSUKA, K., YOKOYAMA, H., “Temperature dependence of the electrical resistivity of water-saturated rocks”, Geophysics, 55, 576-585, 1990.
  • [8] MOSTAFA, M., AFİFY, N., GABER, A., ABOZİD, E., “Electrical Resistivity of Some Basalt and Granite Samples from Egypt”, Egyption Journal of Solids, 26, 25-32, 2003.
  • [9] ZHANG, W., SUN, Q., ZHU, S., HAO, S., “The effect of thermal damage on the electrical resistivity of sandstone”, Journal of Geophysics and Engineering, 14, 255-261, 2017.
  • [10] GOKHALE, C.S., “Studies on strength, deformation and electrical resistivity behaviour of certain sedimentary rocks”, Ph.D. thesis, Indian Institute of Technology, Delhi, India, 1999.
  • [11] SUN, Q., ZHU, S., XUE, L., “Electrical resistivity variation in uniaxial rock compression”, Arabian Journal of Geosciences, 8, 1869-1880, 2015.
  • [12] KATE, J., STHAPAK, A., “Engineering behaviour of certain Himalayan rocks”, The 35th US Symposium on Rock Mechanics (USRMS), 783-788. Reno, Nevada, 1995.
  • [13] KAHRAMAN, S., ALBER, M., “Predicting the physico-mechanical properties of rocks from electrical impedance spectroscopy measurements”, International Journal of Rock Mechanics and Mining Sciences 43, 543-553, 2006.
  • [14] KAHRAMAN, S., OGRETİCİ, E., FENER, M., YEKEN, T., “Predicting the physico-mechanical properties of igneous rocks from electrical resistivity measurements”, Eurorock’06, European Regional ISRM Symposium, 557-560, Liege, Belgium, 2006.
  • [15] KAHRAMAN, S., YEKEN, T., “Electrical resistivity measurement to predict uniaxial compressive and tensile strength of igneous rocks”, Bulletin of Materials Science, 33, 731-735, 2010.
  • [16] SU, O., MOMAYEZ, M., “Indirect estimation of electrical resistivity by abrasion and physico-mechanical properties of rocks”, Journal of Applied Geophysics, 143, 23-30, 2017.
  • [17] BABA, A., KAYA, A., TÜRK, N., “Fairy chimneys Cappadocia and their engineering properties”, Journal of Applied Sciences, 5(5), 800-805, 2005.
  • [18] KORKANÇ, M., “İgnimbiritlerin jeomekanik özelliklerinin yapı taşı olarak kullanımına etkisi: Nevşehir taşı”, Jeoloji Mühendisliği Dergisi, 31(1), 49-60, 2007.
  • [19] YASAR, E., TOLGAY, A., TEYMEN, A., “Industrial usage of Nevsehir-Kayseri (Turkey) tuff stone”, World Applied Sciences Journal, 7(3), 271-284, 2009.
  • [20] KORKANÇ, M., SOLAK, B., “Estimation of engineering properties of selected tuffs by using grain/matrix ratio”, Journal of African Earth Sciences, 120, 160-172, 2016.
  • [21] TOPAL, T., DOYURAN, V., “Analyses of deterioration of the Cappadocian tuff, Turkey”, Environmental Geology, 34(1), 5-20, 1998.
  • [22] ERGÜLER, Z.A., “Field-based experimental determination of the weathering rates of the Cappadocian tuffs”, Engineering Geology, 105, 186-199, 2009.
  • [23] KORKANÇ, M., “Deterioration of different stones used in historical buildings within Nigde province, Cappadocia”, Construction and Building materials, 48, 789-803, 2013.
  • [24] ÖZBEK, A., “Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites”, Bulletin of Engineering Geology and the Environment, 73(2), 595-609, 2014.
  • [25] İNCE İ., FENER M., GÖKÇE M.V., “The effects of freeze-thaw cycles on pyroclastic rocks used in Gümüşler Monastery, Niğde”, Recent Advances in Earth Sciences, Environment and Development Turkey, 4th International Conference on Sustainable Tourism and Cultural Heritage (STACH '15), 135-139. Konya, Turkey, 2015.
  • [26] İNCE, İ., FENER, M., “A prediction model for uniaxial compressive strength of deteriorated pyroclastic rocks due to freeze–thaw cycle”, Journal of African Earth Sciences, 120, 134-140, 2016.
  • [27] ÖZŞEN, H., BOZDAĞ, A., İNCE, İ., “Effect of salt crystallization on weathering of pyroclastic rocks from Cappadocia, Turkey”, Arabian Journal of Geosciences, 10(258), 1-8, 2017.
  • [28] TOPAL, T., DOYURAN, V., “Engineering geological properties and durability assessment of the Cappadocian tuff”, Engineering Geology, 47, 175-187, 1997.
  • [29] ULUSAY, R., GOKÇEOĞLU, C., TOPAL, T., SONMEZ, H., TUNCAY, E., ERGÜLER, Z. A., KASMER, O. “Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia), Turkey”, Environmental Geology, 50(4), 473-494, 2006.
  • [30] KORKANÇ, M., TUĞRUL, A., SAVRAN, A., ÖZGÜR, F.Z., “Structural–geological problems in Gümüşler archeological site and monastery”, Environmental Earth Sciences, 73(8), 4525-4540, 2015.
  • [31] TOPRAK, V., “Vent distribution and its relation to regional tectonics, Cappadocian Volcanics, Turkey”, Journal of Volcanology and Geothermal Research, 85, 55-67, 1998.
  • [32] TEMEL, A., GUNDOGDU, M.N., GROUND, A., Le PENNEC, J.L., “Ignimbrites of Cappadocia (Central Anatolia Turkey): petrology and geochemistry”, Journal of Volcanology and Geothermal Research, 85, 447-471, 1998.
  • [33] TEMEL, A., “Kapadokya eksplozif volkanizmasının petrolojik ve jeokimyasal özellikleri”, Doktora tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Türkiye, 1992.
  • [34] TOPRAK, V., KELLER, J., SCHUMACHER, R., “Volcano-tectonic Features of the Cappadocian Volcanic Province”, International Volcanological Congress-Excursion Guide, 58. Ankara, Turkey, 1994.
  • [35] ISRM, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006 (ed,,Ulusay, R&Hudson, J,), ISRM Turkish National Group, Ankara (Turkey), 2007.
  • [36] ASTM, D2938, Standard test method for unconfined compressive strength of intact rock core specimens, American Society for Testing and Materials, West Conshohocken, 1986.
  • [37] NBG, Engineering Geology and Rock Engineering, Norwegian Group of Rock Mechanics, Fornebu, Norway, 1985.
  • [38] ISRM, Suggested methods for determining the uniaxial compressive strength and deformability of rock materials, In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16, 135-140, 1979.
  • [39] FENER, M., “The effect of rock sample dimension on the P-wave velocity”, Journal of Nondestructive Evaluation, 30, 99-105, 2011.