HVOF yöntemi ile paslanmaz çeliklerin yüzeylerin kaplanması ve aşınma özelliklerinin incelenmesi

Endüstride mekanik özellikleri sebebi ile sıklıkla kullanılan 316L paslanmaz çeliklerin yüzeyleri, özelliklerini iyileştirme amacıyla HVOF yöntemi kaplanmıştır. Çelik yüzeyleri için iki farklı toz; Diamalloy 2002 (Tungsten Karbür, krom esaslı) ve Metco 7202 (krom esaslı) tozları farklı konsantrasyonlarda hazırlanmıştır. A grup numuneler ; %50 Diamalloy 2002 ve %50 Sulzer Metco karışımı ile B grup numuneler ise %100 Sulzer Metco 7202 karışımı ile HVOF yöntemi yardımıyla kaplanmıştır. Bu tozlar içerikleri nedeni ile aşınma dayanımı kazandıran kaplamalar üretmektedirler. Kaplanmış numunelerin yüzey özellikleri bazı yöntemler ile analiz edilmiştir. Tüm numunelerin optik ve SEM görüntüleri alınmış ve XRD analizleri yapılmıştır. Kaplama tabakası net şekilde görülmektedir. Azda olsa bazı porozite oluşumları görülmüştür. Mikrosertlik değerleri ölçülmüştür. Sertlik ölçümleri sonucunda kaplama ile yüzey sertliğinin 5-7 kat arttığı belirlenmiştir. CSM aşınma test cihazı ile lineer aşınma testleri yapılmıştır. Aşınma dayanımlarının arttığı görülmüştür. Aşınma testi sonrası aşınan yüzeylerin pürüzlülük ölçümleri ve SEM-EDS analizleri yapılmıştır. Aşınan yüzeylerde abrasif ve adhesiv aşınma oluşumları mevcuttur.

Surface coating of stainless steels by HVOF method and investigation of wear properties

The surfaces of 316L stainless steels, which are frequently used in the industry due to their mechanical properties, were coated with HVOF method in order to improve their properties. Two different powders for steel surfaces; Diamalloy 2002 (Tungsten Carbide, chromium based) and Metco 7202 (chromium based) powders were prepared in different concentrations. Group A specimens were coated with a mixture of 50% Diamalloy 2002 and 50% Sulzer Metco and Group B specimens were coated with a mixture of 100% Sulzer Metco 7202 by HVOF method. These powders produce coatings that provide wear resistance due to their content. The surface properties of the coated samples were analysed by some methods. Optical and SEM images of all samples were taken and XRD analyses were performed. The coating layer is clearly visible. Some porosity formation was observed. Microhardness values were measured. As a result of hardness measurements, it was determined that the surface hardness increased 4-7 times with the coating. Linear abrasion tests were performed with CSM abrasion tester. It was observed that the abrasion resistance increased. After the abrasion test, roughness measurements and SEM-EDS analyses of the abraded surfaces were performed. Abrasive and adhesive wear formations are present on the worn surfaces.

___

  • G. Bolelli, A. Colellab, L. Lusvarghia, P. Puddua, R. Rigond, P. Sassatellia and V. Testaa, Properties of HVOF-sprayed TiC-FeCrAl coatings, Wear, 418, 36–51, 2019. https://doi: 10.1016/J.WEAR.2018.11.002.
  • H. Adarsha, C.S. Ramesh, N. Nair, K. M. Karisiddeshwaraswamy and A. Chaturvedi, Investigations on the Abrasive Wear Behaviour of Molybdenum Coating on SS304 and A36 using HVOF Technique, Materials Today: Proceedings, 11, 25667–25676, 2018. https://doi: 10.1016/j.matpr.2018.11.008.
  • G.Y. Koga, Corrosion and wear properties of FeCrMnCoSi HVOF coatings, Surface Coatings Technology, 357, 993–1003, 2019. https://doi: 10.1016/j.surfcoat.2018.10.101.
  • W.J. Cheong, B.L. Luan and D.W. Shoesmith, Protective coating on Mg AZ91D alloy – The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni–P deposit, Corrosion Science, 49, 1777–1798, 2007. https://doi: 10.1016/J.CORSCI.2006.08.025.
  • D. Kalliopi and K. Aligizaki, Anti-Corrosion Methods of Materials, Surface Engineering for Corrosion and Wear Resistance, 51, 279-283, 2004. https://doi: 10.1108/acmm.2004.12851aae.001.
  • L. Yu, W. Huang and X. Zhao, Preparation and characterization of Ni-P-nanoTiN electroless composite coatings, J. Alloys Compounds, 50, 4154–4159, 2011. https://doi: 10.1016/J.JALLCOM.2011.01.025.
  • E. Sevgi ve O. Çulha, Isıl İşlem Şartlarının Küresel Grafitli Dökme Demirlerin Özelliklerine Etkisi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23, 1033–1048, 2021. https://doi: 10.21205/DEUFMD.2021236929.
  • A. Billard, F. Maury, P. Aubry, F. Balbaud-Célérier, B. Bernard, F. Lomello, H. Maskrot, E. Meillot, A. Michau and F. Schuster, Emerging processes for metallurgical coatings and thin films, Comptes Rendus Physique, 19, 755–768, 2018. https://doi: 10.1016/J.CRHY.2018.10.005.
  • H. Omidvar, M. Sajjadnejad, G. Stremsdoerfer, Y. Meas and A. Mozaari, Manufacturing Ternary Alloy NiBP-PTFE Composite Coatings by Dynamic Chemical Plating Process, Materials and Manufacturing Processes, 6, 31–36, 2016. https://doi: 10.1080/10426914.2014.994753.
  • Y.Wang, H. Wang, Z. Zhao, C. Hou, X. Liu and X. Song, Surface and Coatings Technology, 473, 25-30, 2023. https://doi.org/10.1016/j.surfcoat.2023.12998
  • M.R. Ramesh, S. Prakash, S.K. Nath, P.K. Sapra and N. Krishnamurthy, Evaluation of thermocyclic oxidation behavior of HVOF-sprayed NiCrFeSiB coatings on boiler tube steels, Journal of Thermal Spray Technology, 20, 992–1000, 2011. https://doi: 10.1007/S11666-010-9605-X/FIGURES/12.
  • J.A. Picas, S.E. Menargues and M.M.T. Baile, Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings, Surface and Coating Technology, 20 456, 2023. https://doi:10.1016/j.surfcoat.2023.129243
  • Ö.A. Kaya, K. Çakır ve Y. Bozkurt, Plazma Püskürtme Yöntemiyle Çelik Levha Üzerine Farklı Alaşımların Kaplanması, International Journal of Engineering Research and Development, 9, 3-6, 2017. https://doi: 10.29137/umagd.372934
  • Z.E. Erkmen, The Effect of Heat Treatment on the Morphology of D-Gun Sprayed Hydroxyapatite Coatings, Journal of Biomedical Materials Research, 361-368, 1999. https://doi: 10.1002/(SICI)1097-4636(1999)48:6.
  • J.A. Picas, S. Menargues, E. Martin and M.T. Baile, Cobalt free metallic binders for HVOF thermal sprayed wear resistant coatings Surface & Coatings Technology 456, 129243, 2023. https://doi.org/10.1016/j.surfcoat.2023.129243
  • Sulzer, Surface engineering and thermal spraying. https://www.sulzer.com/en/shared/services/surface- engineering-and-thermal-spraying, Accessed 25 September 2023.
  • C. Zheng, Y. Liu, J. Qin, C. Chen and R. Ji, Wear behavior of HVOF sprayed WC coating under water-in-oil fracturing fluid condition, Tribology International, 115, 28–34, 2017. https://doi.org/10.1016/j.triboint.2017.05.002
  • W. Zhoua, K.Zhoua, Y. Li, C. Dengc and K. Zengc, High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings, Applied Surface Science, 416, 33–4, 2017. http://dx.doi.org/10.1016/j.apsusc.2017.04.132
  • M. Oksa, E. Turunen, T. Suhonen, T. Varis and S.P. Hannula, Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications, MDPI Coatings, 1, 17-52, 2011. https://doi.org/10.3390/coatings1010017
  • S. Hong, Y. Wu, B. Wang and J. Lin, Improvement in Tribological Properties of Cr12MoV Cold Work Die Steel by HVOF Sprayed WC-CoCr Cermet Coatings, MDPI Coatings, 29, 3-12, 2019. https://doi: 10.3390/coatings9120825.
  • A. C. Karaoglanli, M. Oge, K. M. Doleker and M. Hotamis, Comparison of tribological properties of HVOF sprayed coatings with different composition, Surface Coatings Technology, 318, 299–308, 2017. https:// doi: 10.1016/j.surfcoat.2017.02.021.
  • Z.B. Zheng, Y.G. Zheng, W.H. Sun and J.Q. Wang, Erosion–corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution, Corrosion Science, 76, 337–347, 2013. https://doi: 10.1016/J.corsci.2013.07.006.
  • S. Hong, Y. Wu, G. Li, B. Wang, W. Gao and G. Ying, Microstructural characteristics of high-velocity oxygen-fuel (HVOF) sprayed nickel-based alloy coating, Journal of Alloys and Compounds, 581, 398–403, 2013. https:// doi: 10.1016/J.jallcom.2013.07.109.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi