Tersinir yakıt hücreleri ile karbondioksit elektrolizinin modellenmesi

Bu çalışmada sıfır ve çok boyutlu modelleme araçları ile tersinir bir yakıt hücresinde buhar ve karbon dioksit elektrolizi incelenmiştir. Temel alınan modeli olşuturmak için sıfır boyutlu bir model göz önüne alınmış ve sonuçlar tekli bir hücreye uygulanmıştır. Varolan hücrenin boyutları sıfır boyutlu modelde kullanılarak doğrulama yapılmış ve mikro ve makro ölçekte çok boyutlu performans arttırımı için temel oluşturmuştur. Optimum akım yoğunluğu olan 1 kA/m2 değerinde düşük aşırı gerilim değerleri ede edilmiş ve yüksek verimlilik sağlanmıştır. Ulaşılabilir en yüksek verim %75 olarak gözlemlenmiştir.

Modeling of carbon dioxide electrolysis with reversible fuel cells

In this study use of a reversible solid oxide fuel cell for co-electrolysis of steam and carbon dioxide is investigated using zero and multi-dimensional modeling tools. A zero-dimensional model is taken into account as the base model and applied to a single-cell system. Dimensions of the cell is used for the zero-dimensional model to provide a base for the multi-dimensional performance enhancement of the cell at micro to macro scales. An optimal current density is available at slightly lower than 1000 A/m2 to provide low overpotentials and higher efficiency. Maximum reachable cell efficiency in this case is about 75%.

___

  • A. Körner, C. Tam, S. Bennett and J. Gagné, Technology roadmap-hydrogen and fuel cells. Technical Annex for International Energy Agency (IEA), page 3-7, Paris, France, 29 June 2015.
  • B. Lei, B. Samir and T. Enrico. Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chemical Society Reviews, 43(24), 8255-8270, 2014. https://doi.org/10.1039/C4CS00194J
  • S. D. Ebbesen, R. Knibbe and M. Mogensen, Co-electrolysis of steam and carbon dioxide in solid oxide cells. Journal of the Electrochemical Society, 159(8), F482, 2012. https://doi.org/10.1149/2.076208jes
  • S. D. Ebbesen, C. Graves and M Mogensen, Production of synthetic fuels by co-electrolysis of steam and carbon dioxide. International Journal of Green Energy, 6(6), 646-660, 2009. https://doi.org/10.1080/15435070903372577
  • C. M. Stoots, J. E. O’brien, J. S. Herring and J. J Hartvingsen, Syngas production via high-temperature coelectrolysis of steam and carbon dioxide. Journal of fuel cell science and technology, 6, 1, 2009.
  • S. D. Ebbesen, C. Graves, A. Hauch, S. H. Hensen and M. Mogensen, Poisoning of solid oxide electrolysis cells by impurities. Journal of the Electrochemical Society, 157(10), B1419, 2010. https://doi.org/https://doi.org/10.1149/1.3464804
  • N. Q. Minh and M. Mogensen. Reversible solid oxide fuel cell technology for green fuel and power production. The electrochemical Society Interface, 22(4), 55, 2013. https://doi.org/https://doi.org/10.1149/2.F05134if
  • Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao and J. Zhang, A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chemical Society Reviews, 46(5), 1427-1463, 2017. https://doi.org/10.1039/C6CS00403B
  • T. Wei, P. Singh, Y. Gong, J. B. Goodenough, Y. Huang and K. Huang, Sr 3− 3x Na 3x Si 3 O 9− 1.5 x (x= 0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells. Energy & Environmental Science, 7(5), 1680-1684, 2014. https://doi.org/10.1039/C3EE43730B
  • Y. Wang, T. Liu, S. Fang and F. Chen, Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1. 5Mo0. 5O6–Sm0. 2Ce0. 8O1. 9 electrodes. Journal of Power Sources, 305, 240-248, 2016. https://doi.org/10.1016/j.jpowsour.2015.11.097
  • Q. Liu, C. Yang, X. Dong and F. Chen. Perovskite Sr2Fe1. 5Mo0. 5O6− δ as electrode materials for symmetrical solid oxide electrolysis cells. International Journal of Hydrogen Energy, 35(19), 10039-10044, 2010. https://doi.org/10.1016/j.ijhydene.2010.08.016
  • T. Chen, M. Liu, Y. Zhou, X. Ye and Z. Zhan, High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+ δ impregnated scandia stabilized zirconia oxygen electrode. Journal of Power Sources, 276, 1-6, 2015. https://doi.org/10.1016/j.jpowsour.2014.11.042
  • J. Li, C. Zhong, X. Meng, H. Wu, H. Nie, Z. Zhan and S. Wang, Sr2Fe1. 5Mo0. 5O6–δ–Zr0. 84Y0. 16O2–δ Materials as Oxygen Electrodes for Solid Oxide Electrolysis Cells. Fuel Cells, 14(6), 1046-1049, 2014. https://doi.org/10.1002/fuce.201400021
  • C. Graves, S. D. Ebbesen and M. Mogensen, Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid State Ionics, 192(1), 398-403, 2011. https://doi.org/10.1016/j.ssi.2010.06.014
  • W. Li, H. Wang, Y. Shi and N. Cai, Performance and methane production characteristics of H2O–CO2 co-electrolysis in solid oxide electrolysis cells. International journal of hydrogen energy, 38(25), 11104-11109, 2013. https://doi.org/10.1016/j.ijhydene.2013.01.008
  • C. Stoots., J. O'Brien and J. Hartvigsen, Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory. International Journal of Hydrogen Energy, 34(9), 4208-4215, 2009. https://doi.org/10.1016/j.ijhydene.2008.08.029
  • K. Chen, S. Liu, N. Ai, M. Koyama and S. P. Jiang, Why solid oxide cells can be reversibly operated in solid oxide electrolysis cell and fuel cell modes?. Physical Chemistry Chemical Physics, 17(46), 31308-31315, 2015. https://doi.org/10.1039/C5CP05065K
  • C. Graves, S. D. Ebbesen, S. H. Jensen, S. B. Simonsen and M. Mogensen, Eliminating degradation in solid oxide electrochemical cells by reversible operation. Nature materials, 14(2), 239-244, 2015. https://doi.org/10.1038/NMAT4165
  • G. A. Hughes, K. Yakal-Kremski and S. A. Barnett, Life testing of LSM–YSZ composite electrodes under reversing-current operation. Physical Chemistry Chemical Physics, 15(40), 17257-17262, 2013. https://doi.org/10.1039/C3CP52973H
  • A. Hauch, S. D. Ebbesen, S. H. Jensen and M. Mogensen, Solid oxide electrolysis cells: Microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. Journal of the Electrochemical Society, 155(11), B1184, 2008. https://doi.org/10.1149/1.2967331
  • A. Hauch, S. H. Jensen, J. B. Bilde-Sørensen and M. Mogensen, Silica segregation in the Ni∕ YSZ electrode. Journal of the Electrochemical Society, 154(7), A619, 2007. https://doi.org/10.1149/1.2733861
  • M. A. Laguna-Bercero, J. A. Kilner and S. J. Skinner, Development of oxygen electrodes for reversible solid oxide fuel cells with scandia stabilized zirconia electrolytes. Solid State Ionics, 192(1), 501-504, 2011 https://doi.org/10.1016/j.ssi.2010.01.003.
  • W. Wang, Y. Huang, S. Jung, J. M. Vohs and R. J. Gorte, A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes. Journal of the Electrochemical Society, 153(11), A2066, 2006 https://doi.org/10.1149/1.2345583.
  • P. Hjalmarsson, X. Sun, Y. L. Liu and M. Chen, Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. Journal of power sources, 223, 349-357, 2013. https://doi.org/10.1016/j.jpowsour.2012.08.063
  • K. Chen and N. Ai, Development of (Gd, Ce) O2-impregnated (La, Sr) MnO3 anodes of high temperature solid oxide electrolysis cells. Journal of the Electrochemical Society, 157(11), P89, 2010. https://doi.org/10.1149/1.3481436
  • B. Yu, W. Zhang, J. Xu, J. Chen, X. Luo and K. Stephan, Preparation and electrochemical behavior of dense YSZ film for SOEC. International journal of hydrogen energy, 37(17), 12074-12080, 2010. https://doi.org/10.1016/j.ijhydene.2012.05.063
  • W. Zhang, B. Yu and J. Xu, Investigation of single SOEC with BSCF anode and SDC barrier layer. International journal of hydrogen energy, 37(1), 837-842, 2012. https://doi.org/10.1016/j.ijhydene.2011.04.049
  • R. Xing, Y. Wang, Y. Zhu, S. Liu and C. Jin, Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0. 75Sr0. 25Cr0. 5Mn0. 5O3− δ–Cu ceramic composite electrode. Journal of Power Sources, 274, 260-264, 2015. https://doi.org/10.1016/j.jpowsour.2014.10.066
  • T. Chen, M. Liu, C. Yuan, Y. Zhou, X. Ye, Z. Zhan, C. Xia and S. Wang, High performance of intermediate temperature solid oxide electrolysis cells using Nd2NiO4+ δ impregnated scandia stabilized zirconia oxygen electrode. Journal of Power Sources, 276, 1-6, 2015. https://doi.org/10.1016/j.jpowsour.2014.11.042
  • T. Ogier, J. M. Bassat, F. Mauvy, S. Fourcade, J. C. Grenier, K. Couturier, M. Petitjean and J. Mougin, Enhanced performances of structured oxygen electrodes for high temperature steam electrolysis. Fuel Cells, 13(4), 536-541, 2013. https://doi.org/10.1002/fuce.201200201
  • J. Schefold, A. Brisse and F. Tietz, Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode. Journal of the Electrochemical Society, 159(2), A137, 2011. https://doi.org/10.1149/2.076202jes
  • P. Moçoteguy and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. International journal of hydrogen energy, 38(36), 15887-15902, 2013. https://doi.org/10.1016/j.ijhydene.2013.09.045
  • M. S. Sohal, J. E. O’Brien, C. M. Stoots, V. L. Sharma, B. Yildiz and A. Virkar, Degradation issues in solid oxide cells during high temperature electrolysis. Journal of Fuel Cell Science and Technology, 9(1), 2012. https://doi.org/10.1115/1.4003787
  • G. L. Hawkes, J. E. O’Brien, C. M. Stoots and R. Jones, 3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis. ANS Summer Meeting, Boston, June 24, 2007.https://www2.ans.org/meetings/docs/2007/am2007-official.pdf
  • J. E. O'Brien, M. G. McKellar, C. Stoots, J. S. Herring and G. L. Hawkes, Parametric study of large-scale production of syngas via high-temperature co-electrolysis. International Journal of Hydrogen Energy, 34(9), 4216-4226, 2009. https://doi.org/10.1016/j.ijhydene.2008.12.021
  • M. G. McKellar, J. E. O’Brien, C. M. Stoots and G. L. Hawkes, Process Model for the Production of Syngas Via High Temperature Co-Electrolysis. In ASME International Mechanical Engineering Congress and Exposition, vol. 43009, pp. 691-699, 2007. https://doi.org/10.1115/IMECE2007-43658
  • Z. Zhan, W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim and S. A. Barnett, Syngas production by coelectrolysis of CO2/H2O: the basis for a renewable energy cycle. Energy & Fuels, 23(6), 3089-3096, 2009. https://doi.org/10.1021/ef900111f
  • C. R. Graves, Recycling co2 into sustainable hydrocarbon fuels: Electrolysis of co2 and h2o. Doctoral dissertation, Columbia University, USA, 2010.
  • Y. Wang, T. Liu, S. Fang, G. Xiao, H. Wang and F. Chen, A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process. Journal of Power Sources, 277, 261-267, 2015. https://doi.org/10.1016/j.jpowsour.2014.11.092
  • N. Q. Minh and M. B. Mogensen, Reversible solid oxide fuel cell technology for green fuel and power production. The electrochemical Society Interface, 22(4), 55, 2013. https://doi.org/10.1149/2.F05134if
  • Y. Wang, Y. Du, M. Ni, R. Zhan, Q. Du and K. Jiao, Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Applied Thermal Engineering, 172, 114959, 2020. https://doi.org/10.1016/j.applthermaleng.2020.114959
  • Y. Chen, Y. Luo, Y. Shi and N. Cai, Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis. Applied Energy, 268, 114927, 2020. https://doi.org/10.1016/j.apenergy.2020.114927
  • D. Y. Lee, M. T. Mehran, J. Kim, S. Kim, S. B. Lee, R. H. Song, E. Y. Ko, J. E. Hong, J. Y. Huh and T. H. Lim, Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle. Applied Energy, 257, 114036, 2020. https://doi.org/10.1016/j.apenergy.2019.114036
  • E. P. Reznicek and R. J. Braun, Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management. Applied Energy, 259, 114118, 2020. https://doi.org/10.1016/j.apenergy.2019.114118
  • A. P. Kulkarni, T. Hos, M. V. Landau, D. Fini, S. Giddey and M. Herskowitz, Techno-economic analysis of a sustainable process for converting CO 2 and H 2 O to feedstock for fuels and chemicals. Sustainable Energy & Fuels, 5(2), 486-500, 2021. https://doi.org/10.1039/D0SE01125H
  • C. O. Colpan, F. Hamdullahpur and I. Dincer, Heat-up and start-up modeling of direct internal reforming solid oxide fuel cells. Journal of Power Sources, 195(11), 3579-3589, 2010. https://doi.org/10.1016/j.jpowsour.2009.12.021
  • C. M. Stoots, J. E. O’Brien, J. Herring and J. J. Hartvigsen, Syngas production via high-temperature coelectrolysis of steam and carbon dioxide, J. Fuel Cell Sci. Technol, 6(1): 011014, 2009. https://doi.org/10.1115/1.2971061
  • J. P. Stempien, O. L. Ding, Q. Sun and S. H. Chan, Energy and exergy analysis of Solid Oxide Electrolyser Cell (SOEC) working as a CO2 mitigation device. International Journal of Hydrogen Energy, 37(19), 14518-14527, 2012. https://doi.org/10.1016/j.ijhydene.2012.07.065