Box Behnken istatistiksel deney tasarımının peyniraltı sularının mikrofiltrasyon ile ön arıtımında uygulaması

Bu çalışmada, peynir üretimi sırasında açığa çıkan peyniraltı suyunun mikrofiltrasyon prosesiyle ön arıtımı incelenmiştir. Mikrofiltrasyon verimini arttırmak için biyolojik olarak parçalanabilen, çevre dostu bir polimer olan kitosan kullanılmıştır. Membran çalışmalarında kitosan konsantrasyonu, membran basıncı, mikrofiltrasyon süresi gibi önemli işletme parametrelerinin süzüntü akısı ve KOİ giderme verimi üzerindeki etkilerini belirlemek amacıyla Box-Behnken istatistiksel deney tasarım yönteminden yararlanılmıştır. Yapılan varyans analizi sonunda tahmini ve hesaplanmış korelasyon katsayıları sırasıyla, süzüntü akısı için 0.9981 ve 0.9805, KOİ giderme verimi için 0.9974 ve 0.9953 olarak bulunmuştur. Çalışmada kullanılan Box-Behnken istatistiksel deney tasarım metodunun, peyniraltı suyunun mikrofiltrasyonunda akı ve KOİ giderimi için istatistiksel olarak güvenilir sonuçlar verdiği kanıtlanmıştır. Yapılan çalışmalar sonucunda 22.8 l/m2.sa’lik maksimum akı değerine 5 mg/l kitosan, 2 bar basınç ve 30 dakika mikrofiltrasyon süresinde ulaşılmıştır. Diğer taraftan, maksimum Kimyasal Oksijen İhtiyacı (KOİ) giderme verimi (%67.5) ise 15 mg/l kitosan konsantrasyonu, 1 bar basınç, 30 dakika mikrofiltrasyon süresinde elde edilmiştir.

Application of Box Behnken statistical experimental design to the pretreatment of cheese whey by microfiltration

In this study, pre-treatment of cheese whey effluent released during cheese production by microfiltration process was investigated. Chitosan, a biodegradable, environmentally friendly polymer, was used to increase the microfiltration efficiency. The Box-Behnken statistical experiment design method was applied to investigate the effects of important operating parameters; chitosan concentration, membrane pressure, microfiltration time on permeate flux and COD removal efficiency in membrane studies. As a result of the analysis of variance, the predicted and calculated correlation coefficients were found to be 0.9981 and 0.9805 for the permeate flux, and 0.9974 and 0.9953 for the COD removal efficiency, respectively. With the Box-Behnken statistical experiment design method used in the study, it has been proven that it gives statistically reliable results for permeate flux and COD removal in cheese whey effluent microfiltration. As a result of the studies, the maximum flux value of 22.8 l/m2.h was achieved at 5 mg/l chitosan concentration, 2 bar pressure and 30 minutes microfiltration time. Maximum Chemical Oxygen Demand (COD) removal efficiency (67.5%) was obtained at 15 mg/l chitosan concentration, 1 bar pressure, 30 minutes microfiltration time.

___

  • T.T. Bayram, A. Nuhoğlu, Süt endüstrisi atıksularının biyolojik arıtımında mikroorganizma konsantrasyonu ile akı profilinin değişimi ve kullanılan membranın temizlenmesi, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2 (2), 9-20, 2013. https://doi.org/ 10.28948/ngumuh.239377.
  • M.I.G. Siso, The biotechnological utilization of cheese whey: A review, Bioresource Technology, 57 (1): 1-11, 1996. https://doi.org/10.1016/0960-8524(96)00036-3.
  • F. Carvalho, A.R. Prazeres, J. Rivas, Cheese whey wastewater: Characterization and treatment. Science of The Total Environment, 445–446, 385-396, 2013. https://doi.org/10.1016/j.scitotenv.2012.12.038.
  • S.V. Kalyuzhnyi, E.P. Martinez, R. Martinez, Anaerobic treatment of high-strength cheese-whey wastewaters in laboratory and pilot UASB-reactors, Bioresource Technology, 60, 59-65, 1997. https://doi.org/10.1016/S 0960-8524(96)00176-9.
  • G. Güven, A. Perendeci, A. Tanyolaç, Electrochemical treatment of deproteinated whey wastewater and optimization of treatment conditions with response surface methodology, Journal of Hazardous Materials, 157, 69-78, 2008. https://doi.org/10.1016/j.j hazmat.20 07.12.082.
  • B. Ekka, I. Mierin¸ T. Juhna, K. Kokina, M. Turks, Synergistic effect of activated charcoal and chitosan on treatment of dairy wastewaters, 31, 103477, 2022. https://doi.org/10.1016/j.mtcomm.2022.103477.
  • E.S. Mansor, E.A. Ali, A.M. Shaban, Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment, Chemical Engineering Journal, 407, 127175, 2021. https://doi.org/10.1016/j. cej.2020.127175.
  • B. Sarkar, P.P. Chakrabarti, A. Vijaykumar, V. Kale, Wastewater treatment in dairy industries —Possibility of reuse, Desalination, 195, 141–152, 2006. https://doi.org/10.1016/j.desal.2005.11.015.
  • H. Odegard, Optimization of flocculation/flotation in chemical wastewater treatment, Water Science and Technology, 19, 1233-1237, 1995. https://doi.org/10.10 16/0273-1223(95)99878-8.
  • B. Rusten, Chemical pretreatment of dairy wastewater, Water Science and Technology, 28, 67-72, 1993. https://doi.org/10.2166/wst.1993.0078.
  • R. Mukhopadhyay, D. Talukdar, B. Chatterjee, A. Guha, Whey processing with chitosan and isolation of lactose. Process Biochemistry, 39, 381-385, 2003. https://doi.org/10.1016/S0032-9592(03)00126-2
  • E.S. Olsen, H.C. Ratnaweera, R. Pehrson, A novel treatment process for dairy wastewater with chitosan produced from shrimp-shell waste, Water Science and Technology, 34, 33-40, 1996. https://doi.org/10.2166/ wst.1996.0260.
  • A.R. Prazeres, F. Carvalho, J. Rivas, Cheese whey management: A review, Journal of Environmental Management, 110, 48-68, 2012. https://doi.org/10.10 16/j.je nvman.2012.05.018.
  • G.L. Munizz, A.C. Borges, T.C. F. Silva, R.O. Batista, S.R. Castro, Chemically enhanced primary treatment of dairy wastewater using chitosan obtained from shrimp wastes: optimization using a Doehlert matrix design, Environmental Technology, 43(2):237-254, 2022. https://doi.org/10.1080/09593330.2020.1783372
  • A. C. Bortoluzzi, C. E. D. Oro, M. S. N. Santos, M. L. Mignoni, R. M. Dallago, J. Stefens, M. V. Tres, Combination of chemical coagulation and membrane based separation for dairy wastewater treatment Journal of Food Science and Technology 60(1):84–91, 2023, https://doi.org/10.1007/s13197-022-05590-2.
  • E.O. Akdemir, A. Ozer, Pretreatment of cheese whey effluent by microfiltration process: A statistical design approach, Ekoloji, 22 (88), 21-27, 2013. https://doi.org/ 10.5053/ekoloji.2013.883
  • E.O. Akdemir, Zeytinyağı endüstrisi atıksularının kitosan ile koagülasyonunda Box-Behnken istatistiksel deney tasarım yönteminin uygulanması, Bilecik Seyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 241-248, 2022. https://doi.org/10.35193/bseufbd.1009083
  • R.B. Baird, A.D. Eaton, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, A.B.D. 2017.
  • N. Genç, E. Durna, H.K.K. Cicigün, Response surface modeling and optimization of microwave-activated persulfate oxidation of olive oil mill wastewater, Clean Soil Air Water, 48, 1-11, 2020. https://doi.org/10. 1002/clen.201900198.
  • R. Singh, P. Bhunia, R.R. Dash, Optimization of organics removal and understanding the impact of HRT on vermifiltration of brewery wastewater. Science of the Total Environment, 651, 1283-1293, 2019. https://doi .org/10.10 16/j.scitotenv.2018.09.307.
  • L. Hu, G. Zhang, M. Liu, Q. Wang, P. Wang, Optimization of the catalytic activity of a ZnCo2O4 catalyst in peroxymonosulfate activation for bisphenol A removal using response surface methodology, Chemosphere, 212, 152-161, 2018. https://doi.org/ 10.1016/j.chemosphere.2018.08.065.
  • E.O. Akdemir, E. Aygan, Pretreatment of olive mill wastewater by ultrafiltration process using chitosan, Desalination and Water Treatment, 142, 49-55, 2019. https://doi.org/10.5004/dwt.2019.23407.
  • A.L. Ahmad, S. Ismail, S. Bhatia, Ultrafiltration behavior in the treatment of agro-industry effluent: Pilot scale studies, Chemical Engineering Science, 60, 5385–5394, 2005. https://doi.org/10.1016/j.ces.2005 .04.021.
  • E.O. Akdemir, A. Ozer, Application of a statistical technique for olive oil mill wastewater treatment using ultrafiltration process, Separation and Purification Technology, 62, 222–227, 2008. https://doi.org/10.101 6/j.seppur.200 8.01.006.
  • B. Krajewska, Membrane-based processes performed with use of chitin/chitosan materials, Separation and Purification Technology, 41(3), 305–312, 2005, https://doi.org/10.1016/j.seppur.2004.03.019.
  • T. Mohammadi A. Esmaeelifar, Wastewater treatment of a vegetable oil factory by a hybrid ultrafiltration-activated carbon process, Journal of Membrane Science, 254, 129-137, 2005. https://doi.org/10.101 6/j.memsci.20 04.12.037
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi