FDM SİLİNDİRİK KABUKLARIN KARMA SINIR KOŞULLARINDA DİNAMİK TEPKİSİNİN İNCELENMESİ

Bu makalede, karma sınır koşulları altındaki fonksiyonel derecelendirilmiş malzemelerden (FDM) oluşan silindirik kabukların (FDMSK’ların) dinamik tepkisi klasik kabuk teorisi (KKT) kapsamında incelenmektedir. FDM’lerin özellikleri tanımlanarak, Donnell kabuk teorisi kullanılarak temel bağıntılar ve temel denklemler türetilmektedir. Karma sınır koşulları için temel denklemlere Galerkin yöntemi uygulanarak, frekans için kapalı çözüm elde edilmektedir. Elde edilen ifade dalga sayılarına göre minimize edilerek, frekansın minimum değeri bulunmakta ve literatürdeki sonuçlarla karşılaştırılarak doğruluğu kanıtlanmaktadır. FDM'lerin serbest titreşim frekansı üzerindeki etkileri sayısal olarak detaylı bir biçimde incelenmektedir

THE INVESTIGATION OF DYNAMIC RESPONSE OF FGM CYLINDRICAL SHELLS IN MIXED BOUNDARY CONDITIONS

In this paper, the dynamic response of cylindrical shells composed of functionally graded materials (FGMs) under mixed boundary conditions is examined within the context of classical shell theory (CST). The properties of FGMs are defined and then fundamental relations and governing equations are derived using Donnell shell theory. By applying the Galerkin method to the basic equations for mixed boundary conditions, a closed-form solution for the frequency is obtained. The obtained expression is minimized according to the wave numbers, the minimum value of the frequency is found and its accuracy is proved by comparing with the results in the literature. The effects of FGMs on the free frequency of the vibration frequency are investigated in detail.

___

  • [1] Bever, M.B., Duwez, P.F., 1972. Gradients in composite materials. Materials Science and Engineering, 10, 1–8.
  • [2] Koizumi, M., 1997. FGM activities in Japan. Composites Part B: Engineering, 28, 1–4.
  • [3] Hirai, T., Materials Science and Technology. Brook, R.J., (Ed.), Vch Verlagsgesellschaft (292-341), Weinheim, Germany, 1996.
  • [4] Müller, E., Drašar, C., Schilz, J., Kaysser, W.A., 2003. Functionally graded materials for sensor and energy Applications. Materials Science Engineering A, 362, 1–2, 17–39.
  • [5] Kawasaki, A., Watanabe, R., 1997. Concept and P/M fabrication of functionally gradient materials. Ceramic International, 23(1), 73–83.
  • [6] Reddy, J.N., Chin, C.D., 1998. Thermo-mechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses, 21, 593–626.
  • [7] Pitakthapanaphong, S., Busso, E.P., 2002. Self-consistent elastoplastic stress solutions for functionally graded material systems subjected to thermal transients. Journal of the Mechanics and Physics of Solids, 50, 695–716.
  • [8] Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Science, 41, 309–324.
  • [9] Sofiyev, A.H., 2003. Dynamic buckling of functionally graded cylindrical thin shells under nonperiodic impulsive loading. Acta Mechanica, 165, 151–163.
  • [10] Tornabene, F., 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computational Methods in Applied Mechanics and Engineering, 198, 2911–2935.
  • [11] Brischetto, S., 2016. Curvature approximation effects in the free vibration analysis of functionally graded shells. International Journal of Applied Mechanics, 1650079.
  • [12] Zghal, S., Frikha, A., Dammak, F., 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematics Modeling, 53, 132-155.
  • [13] Pradhan, S.C., Loy, C.T., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustic, 61, 111–129.
  • [14] Haddadpour, H., Mahmoudkhani, S., Navazi, H.M., 2007. Free vibration analysis of functionally graded cylindrical shells ıncluding thermal effects. Thin-Walled Structures, 45, 591–599.
  • [15] Pandey, S., Pradyumna, S., 2015. A layerwise finite element formulation for free vibration analysis of functionally graded sandwich shells. Composite Structures, 133, 438-450.
  • [16] Agenosov, L.G., Sachenkov, A.V., Stability and Free Vibration of Thin Circular Cylindrical and Conical Shells with Different Boundary Conditions. Research on the Theory of Plates and Shells, Kazan State University, Kazan, USSR, 2, 111–126 (in Russian), 1964.
  • [17] Sofiyev, A.H., Kuruoglu, N., 2015. On a problem of the vibration of functionally graded conical shells with mixed boundary conditions. Composites Part B-Engineering, 70, 122-130.
  • [18] Süzer, M., 2019. Karışık sınır koşulları altında fonksiyonel dereceli silindirik kabukların titreşim analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 94s.
  • [19] Avey, A., Süzer, M., 2019. Karışık sınır koşulları altında fonksiyonel derecelendirilmiş silindirik kabukların titreşim analizi. 21. Ulusal Mekanik Kongresi Bildiriler Kitabı, Niğde Ömer Halisdemir Üniversitesi, 02-06 Eylül 2019, 915-924.
  • [20] Sofiyev, A.H., Hui, D., 2019. On the vibration and stability of FGM cylindrical shells under external pressures with mixed boundary conditions by using FOSDT. Thin-Walled Structures, 134, 419-427.
  • [21] Shen, H.S., Functionally Graded Materials, Nonlinear Analysis of Plates and Shells, CRC Press, Florida, 2009.
  • [22] Volmir, A.S., Stability of Elastic Systems. Nauka, Moscow. English Translation: Foreign Tech. Division, Air Force Systems Command. Wright-Patterson Air Force Base, Ohio, AD628508, 1967.
  • [23] Leissa, A.W., Vibration of Shells. NASA SP–288, 1973.
  • [24] Reddy, J. N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC press, 2004.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi