PATLATMA KAYNAKLI YER SARSINTISININ TAHMİNİ VE İNSANLAR ÜZERİNDEKİ OLASI ETKİLERİNİN DEĞERLENDİRİLMESİ

Bu çalışma literatürde nispi olarak az yer bulmuş olan patlatma kaynaklı yer sarsıntısının insanlar üzerindeki etkisine odaklanmaktadır. Öncelikle İstanbul bölgesinde bulunan bir agrega ocağında patlatma kaynaklı yer sarsıntısı ölçümleri gerçekleştirilmiştir. Bu ölçümler kullanılarak dokuz farklı yer sarsıntısı tahmin denklemi oluşturulmuştur. En uygun tahmin denkleminin seçimi için mutlak hata, yüzde hata ve ölçekli hata ölçütleri kullanılmıştır. Küp kök ölçekli mesafe konseptine dayanan denklemin en başarılı denklem olduğu tespit edilmiştir. Seçilen denklem ile mesafelere göre yer sarsıntısı tahmini gerçekleştirilmiştir. Tahmin edilen değerler göz önüne alınarak yer sarsıntısının insanlar üzerindeki etkisi incelenmiştir. Yer sarsıntısı seviyelerini değerlendirmek için parçacık hızı, frekans ve sarsıntı süresini birlikte kullanan kriterin daha güvenilir olduğu sonucuna varılmıştır. Ek olarak, kazık çakma faaliyeti için geliştirilen bir yaklaşımın, patlatma kaynaklı yer sarsıntısı değerlendirilirken alternatif olarak kullanılabileceği öngörülmüştür. Son olarak çalışılan ocakta belirli yer sarsıntısı limit değerlerinin altında kalmak için kullanılabilecek patlayıcı miktarları hesaplanmıştır.

PREDICTION OF BLAST INDUCED GROUND VIBRATION AND EVALUATION OF PROBABLE HUMAN RESPONSE

This study focuses on a relatively neglected topic of the effect of the blast induced vibrations on humans. The vibration monitoring was performed in an Istanbul region quarry. Nine different predictor equations were created for ground vibration. Absolute errors, percentage errors and scaled errors were applied to determine the most successful equation. The equation, which relies on cube root scaled distance concept, was determined as most successful predictor. The blast vibration was estimated by the selected equation considering the measurement distance. Human response to ground vibration was evaluated based on the predicted values. The criterion, which considers particle velocity, frequency and vibration duration together, was found to be reliable for evaluation. Additionally, a criterion proposed for pile driving was suggested for evaluation of blast induced ground vibration. The amount of maximum instantaneous explosive charge was calculated to meet the requirements of the vibration limits for the studied quarry.    

___

  • [1] PENG, Y., WENBO, L., JING, Z., YUJUN, Z., MING, C., “Evaluation of Human Response to Blasting Vibration From Excavation of a Large-Scale Rock Slope: A Case Study”, Earthquake Engineering and Engineering Vibration, 16, 435-446, 2017.
  • [2] T.C. Çevre ve Orman Bakanlığı, Çevresel Gürültünün Değerlendirilmesi ve Yönetimi Yönetmeliği, Resmi Gazete Sayısı: 27601, Ankara, Türkiye, 2010.
  • [3] EROSKAY, S.O., “Graywackes of Istanbul Region”, Proceedings of the International Symposium on Design of Supports to Deep Excavations”, 41-44. Istanbul, Turkey, 1985.
  • [4] TUGRUL, A., UNDUL, O., “Engineering Geological Characteristics of Istanbul Greywackes”, Proceedings of the 10th International Association for Engineering Geology and the Environment (IAEG) Congress, Paper no. 395. Nottingham, United Kingdom, 2006.
  • [5] ISEE, Field Practice Guidelines for Blasting Seismographs, International Society of Explosives Engineers, Cleveland, USA, 2015.
  • [6] DUVALL, W.I., PETKOF, B., Spherical Propagation of Explosion Generated Strain Pulses in Rock, RI 5483, US Bureau of Mines, Washington DC, USA, 1959.
  • [7] MORHARD, R.C., CHIAPPETTA, R.F., BORG D.G., Explosives and Rock Blasting, Atlas Powder Co., Dallas, USA, 1987.
  • [8] KONYA, C.J., WALTER, E.J., Rock Blasting and Overbreak Control, Precision Blasting Services, Montville, USA, 1991.
  • [9] PERSSON, P.A., HOLMBERG, R., Lee J., Rock Blasting and Explosives Engineering, CRC Press, Boca Raton, Fla, USA, 1993.
  • [10] AMBRASEYS, N.R., HENDRON, A.J., Dynamic Behaviour of Rockmasses. In: K.G. Stagg, O.C. Zienkiewicz (Eds.), Rock Mechanics in Rock Mechanics in Engineering Practice (pp. 203–207), Wiley, London, UK, 1968.
  • [11] LANGEFORS, U., KIHLSTROM, B., The Modern Technique of Rock Blasting, Wiley, New York, USA, 1963.
  • [12] Indian Standard IS, Criteria for Safety and Design of Structures Subjected to Underground Blast, Bulletin No: IS-6922, Bureau of Indian Standards, New Delhi, India, 1973.
  • [13] GHOSH, A., DAEMEN, J.K., “A Simple New Blast Predictor of Ground Vibrations Induced Predictor”, Proceedings of the 24th US Symposium on Rock Mechanics, 151-161. Texas, USA, 1983.
  • [14] GUPTA, R.N., ROY, P.P., BAGACHI, A., SINGH, B., “Dynamic Effects In Various Rock Mass And Their Predictions”, J Mines Met Fuel, 35, 455-462, 1987.
  • [15] GUPTA, R.N., ROY, P.P., SINGH, B., “On a Blast Induced Blast Vibration Predictor for Efficient Blasting”, Proceedings of the 22nd International Conference of Safety in Mines, 1015-1021. Beijing, China, 1988.
  • [16] HYNDMAN, R.J., KOEHLER, A.B., “Another Look at Measures of Forecast Accuracy”, International Journal of Forecasting, 22, 679–688, 2006.
  • [17] HÜDAVERDİ, T., AKYILDIZ, O., “Investigation of the Site-Specific Character of Blast Vibration Prediction”, Environmental Earth Sciences, 76, 138, 2017.
  • [18] SHCHERBAKOV, M.V., BREBELS, A., SHCHERBAKOVA, N.L., TYUKOV, A.P., JANOVSKY, T.A., KAMAEV, V.A., “A Survey of Forecast Error Measures”, World Applied Sciences Journal, 24, 171-176, 2013.
  • [19] MAKRIDAKIS, S., HIBON, M., “Evaluating Accuracy (or Error) Measures”, INSEAD Working Paper Series, 18, 1-31, 1995
  • [20] ISEE, ISEE Blaster’s Handbook, 18th Edition, International Society of Explosive Engineers, Cleveland, Ohio, USA, 2011.
  • [21] ORIARD, L.L., EMMERT, M.W., “Short-delay Blasting at Anaconda’s Berkeley Open-pit Mine”, Proceedings of the AIME Annual Meeting, 60-80. Las Vegas, USA, 1980.
  • [22] U.S. ARMY CORPS OF ENGINEERS, Systematic Drilling and Blasting For Surface Excavations, Engineer manual 1110-2-3800, Department of the Army, Washington DC, USA, 1974.
  • [23] WISS, J.F., PARMELEE, R.A., “Human Perception of Transient Vibrations”, Journal of the Structural Division, ASCE, 100, 773-787, 1974.
  • [24] SISKIND, D.E., STAGG, M.S., KOPP, J.W., DOWDING, C.H., Structure Response and Damage Produced by Ground Vibration From Surface Mine Blasting, Report of Investigations 8507, US Bureau of Mines, Washington, DC, USA, 1980.
  • [25] MURRAY, T.M., “Acceptability Criteria for Occupant-Induced Floor Vibrations”, Sound and Vibration, 13, 24-30, 1979.
  • [26] BOMMER, J.J., OATES, S., CEPEDA, J.M., LINDHOLM, C., BIRD, J., TORRES, R., MARROQUIN, G., RIVAS, J., “Control of Hazard Due to Seismicity Induced by a Hot Fractured Rock Geothermal Project”, Engineering Geology, 83, 287-306, 2006.
  • [27] MAJER, E.L., BARIA, R., STARK, M., OATES, S., BOMMER, J., SMITH, B., ASANUMA, H., “Induced seismicity associated with Enhanced Geothermal Systems”, Geothermics, 36, 185–222, 2007.
  • [28] INSTANTEL, Micromate Operator Manual (6th ed.), Instantel Inc., Ottawa, Canada, 2017.
  • [29] BARNEICH, J., “Vehicle Induced Ground Motion, Vibration Problems in Geotechnical Engineering”, Proceedings of the Symposium by the Geotechnical Engineering Division in conjunction with the ASCE Convention, 187-202. Detroit, USA, 1985.
  • [30] ATHANASOPOULOS, G.A., PELEKIS, P.C., “Ground Vibrations From Sheetpile Driving in Urban Environment: Measurements, Analysis and Effects on Buildings and Occupants”, Soil Dynamics and Earthquake Engineering, 19, 371-387, 2000.