POLİMETİLMETAKRİLAT MALZEMENİN MİKRODALGA İLE OTOJEN KAYNAĞI

   Mikrodalga kullanılarak polimetilmetakrilat (PMMA) levhalar birbirine arada herhangi bir ısı çeken grafit veya silisyum karbür malzeme olmadan, otojen olarak 2 MPa yük altında 70, 80, 90 ve 100 saniye süreyle kaynaklanmıştır. Kaynaklanan parçaların bağlanma mukavemetleri kesme deneyi ile mekanik olarak test edilmiş, en iyi bağlanmanın 80 saniye süreyle kaynaklanan numunelerde olduğu görülmüştür. Bağlanma kuvveti 80 saniye süreyle kaynaklanan numune için 3,1 MPa olarak tespit edilmiştir. Kaynaklanmış parçaların optik mikroskop ve taramalı elektron mikroskobu kullanılarak kaynak bölgesi incelenmiştir. 
Anahtar Kelimeler:

polimer malzeme, kaynak, mikrodalga

AUTOGENOUS MICROWAVE WELDING OF POLYMETHYMETHACRYLATE MATERIAL

   Polymethylmethacrylate (PMMA) sheets were autogenously welded without using heat dissipating graphite or siliconcarbide, under 2MPa load, for 70, 80, 90, and 100 seconds duration times. The shear tests were applied to welded samples to find the bonding strength, the highest bonding strength of 3.1MPa was found in 80 second welded sample.  The weld region of samples were observed for optical and scanning electron microscopy.

___

  • [1] ANDREW J. PEACOCK, A.C., Polymer chemistry : properties and applications. 1st ed. 2006, Munich, Germany: Carl Hanser Verlag.
  • [2] KLAUS ALBRECHT, M.S., THOMAS R., Ullmann's Encyclopedia of Industrial Chemistry, 40 Volume Set. 2011: Wiley.
  • [3] PMMA – POLIMETILMETAKRILAT. 17.07.2018]; Available from: http://www.resinex.com.tr/polimer-turleri/pmma.html.
  • [4] PAGEV. Polimetil Metakrilat (PMMA). 17.07.2018]; Available from: https://www.pagev.org/pmma.
  • [5] MARK, H.F., Encyclopedia of Polymer Science and Technology. 2003: John Wiley & Sons, Incorporated.
  • [6] University of Southern Mississippi, D.o.P.S. Polymer 3D Models. Available from: https://pslc.ws/modelhtms/pmmapdb.htm.
  • [7] FOSTER, K.L. and R.P. WOOL, Strength of Polystyrene Poly(Methyl Methacrylate) Interfaces. Macromolecules, 1991. 24(6): p. 1397-1403.
  • [8] DU, C.S., C.T. HU, and S. LEE, The microstructures of solvent-welded joints of irradiated poly(methyl methacrylate). Journal of Adhesion Science and Technology, 2001. 15(1): p. 83-96.
  • [9] CHO, K., J. KRESSLER, and T. INOUE, Adhesion and Welding in the System San Pmma. Polymer, 1994. 35(6): p. 1332-1335. [10] LIN, C.B., S.B. LEE, and K.S. LIU, The Microstructure of Solvent-Welding of Pmma. Journal of Adhesion, 1991. 34(1-4): p. 221-240.
  • [11] WATANABE, W., Y. LI, and K. ITOH, [INVITED] Ultrafast laser micro-processing of transparent material. Optics and Laser Technology, 2016. 78: p. 52-61.
  • [12] WANG, X., et al., Investigation on enhancement of weld strength between PMMA and PBT in laser transmission welding-Using intermediate material. Journal of Applied Polymer Science, 2016. 133(44).
  • [13] POYRAZ, S., et al., Ultrafast Microwave Welding/Reinforcing Approach at the Interface of Thermoplastic Materials. Acs Applied Materials & Interfaces, 2015. 7(40): p. 22469-22477.
  • [14] JIANG, X., S. CHANDRASEKAR, and C.H. WANG, A laser microwelding method for assembly of polymer based microfluidic devices. Optics and Lasers in Engineering, 2015. 66: p. 98-104.
  • [15] CHENG, Y.T., et al., Comparative Study of the Shear Strength of Plastic Sheet Joined by Laser Transmission Welding (LTW). Lasers in Engineering, 2015. 32(1-2): p. 89-97.
  • [16] MAPLESTON, P., Plastics welding: The choices widen. Plastics Engineering, 2008. 64(4): p. 10-+.
  • [17] NOROUZI, A., M. HAMEDI, and V.R. ADINEH, Strength modeling and optimizing ultrasonic welded parts of ABS-PMMA using artificial intelligence methods. International Journal of Advanced Manufacturing Technology, 2012. 61(1-4): p. 135-147.
  • [18] STOKES, V.K., The vibration welding of poly(methyl methacrylate) to itself and to polycarbonate, poly(butylene terephthalate), and modified poly(phenylene oxide). Journal of Adhesion Science and Technology, 2001. 15(4): p. 457-466.
  • [19] POTENTE, H., O. KARGER, and G. FIEGLER, Laser and microwave welding - The applicability of new process principles. Macromolecular Materials and Engineering, 2002. 287(11): p. 734-744.
  • [20] WISE, R.J. and I.D. FROMENT, Microwave welding of thermoplastics. Journal of Materials Science, 2001. 36(24): p. 5935-5954.
  • [21] YARLAGADDA, P.K.D.V. and T.C. CHAI, Study of microwave dielectric properties of thermoplastics. Processing and Fabrication of Advanced Materials Vi, Vols 1 & 2, 1998: p. 1539-1551.
  • [22] SIORES, E. and D. DOREGO, Microwave Applications in Materials Joining. Journal of Materials Processing Technology, 1995. 48(1-4): p. 619-625.
  • [23] STEEL, J., Microwave Welding Process. Search, 1993. 24(1): p. 16-16.
  • [24] KATHIRGAMANATHAN, P., Microwave Welding of Thermoplastics Using Inherently Conducting Polymers. Polymer, 1993. 34(14): p. 3105-3106.
  • [25] VARADAN, V.K. and V.V. VARADAN, Microwave Joining and Repair of Composite-Materials. Polymer Engineering and Science, 1991. 31(7): p. 470-486.
  • [26] J.TROUGHTON, M., Handbook of plastics joining: a practical guide. 2nd ed. 2008, Norwich, NY, USA: William Andrew Inc.
  • [27] SUNG, P.C., T.H. CHIU, and S.C. CHANG, Microwave curing of carbon nanotube/epoxy adhesives. Composites Science and Technology, 2014. 104: p. 97-103.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi